ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research

Researchers hack corn to grow fatter and absorb more carbon dioxide

Feed me corn!

Alexandru MicubyAlexandru Micu
October 1, 2018
in Agriculture, Biology, News, Research, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

An international team of researchers wants to level up corn by boosting its ability to capture CO2 from the atmosphere.

Maize.
Image credits Juraj Varga.

Corn (or maize) is a fruit and one of the most important staple foods on the planet, exceeding even rice or wheat in quantity grown per year. However, in Australia, while corn has the widest geographical spread of all field crops, it lags behind its counterparts (such as wheat or rice) in yield.

One of the main issues maize has to grapple with in the land down under are harsh environmental conditions. In a bid to help the crop bloom to its full potential, an international team of researchers has been toying with its genome, to boost the plant’s ability to photosynthesize.

Sunny maize

“We developed a transgenic maize designed to produce more Rubisco, the main enzyme involved in photosynthesis, and the result is a plant with improved photosynthesis and hence, growth. This could potentially increase tolerance to extreme growth conditions,” said lead researcher Dr. Robert Sharwood from the ARC Centre of Excellence for Translational Photosynthesis, led by The Australian National University (ANU).

While all plants rely on photosynthesis to capture carbon dioxide from the atmosphere, they go about it in different ways. Plants like wheat and rice use an older and less efficient photosynthetic path (the ‘C3’ path), while other plants such as maize and sorghum use the more efficient C4 path.

Some of the most important food crops today (as well as many that are used for animal feed and biofuel production) rely on the C4 pathway. C4 plants are specially adapted to thrive in hot and dry environments — ones that are expected to be more prevalent in future decades.

“There is an urgent need to deliver new higher-yielding and highly adapted crop species, before crops are affected by the expected climate change conditions. These conditions will increase the threats against global food security, and the only way to prepare for them is through international research collaborations.”

One of the molecules that underpins photosynthesis is an enzyme known as Rubisco — which converts CO2 into organic compounds. Rubisco’s activity is much improved in C4 plants, making the process faster and more water-efficient. As a result, these plants are more tolerant to heat and drought, and tend to be more productive than their C3 counterparts. Maize has one of the most efficient Rubisco enzymes and uses “less nitrogen” to grow than other crops.

“So, our main question was, if we increase Rubisco content in maize, what would it do for the plant?” says co-author David Stern, from the Boyce Thompson Institute.

“We found that by boosting Rubisco inside the maize cells, we get an increase in crop productivity,”

Overall CO2 assimilation and crop biomass increased by 15%, the team reports. While quite excited with their results so far, the researchers plan to further increase the “pool of active Rubisco” in the plant to increase this percentage even further. Until then, however, they hope to pit their maize against real-field conditions — the crop has, thus far, only been tested in glasshouse and cabinet conditions.

RelatedPosts

Climate change may make the oceans belch out CO2, study warns
CO2 emissions might lead to more space junk hazard
Waste not, want not: astronauts to turn pee into nutrients, tools on deep-space missions
New Catalyst converts CO2 to methanol 90 times faster than current options

However, if the team’s maize proves itself hardy enough to survive farmland, it could pave the way for further C4 crop species to receive the same treatment.

The paper “Overexpression of Rubisco subunits with RAF1 increases Rubisco content in maize” has been published in the journal Nature Plants.

Tags: australiaC3C4carbon dioxideco2cornmaizePhotsynthesis

Share27TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Archaeology

Captain Cook’s Famous Shipwreck Finally Found After 25-Year Search in Rhode Island

byTibi Puiu
3 weeks ago
News

Scientists just made butter from air — and it’s hitting the market

byAlexandra Gerea
3 months ago
Environment

Trump-Appointed EPA Plans to Let Most Polluters Stop Reporting CO2 Emissions

byTibi Puiu
3 months ago
Astronomy

Astronomers thought mini-Neptunes had atmospheres with water or hydrogen. This one has neither

byMihai Andrei
5 months ago

Recent news

China Resurrected an Abandoned Soviet ‘Sea Monster’ That’s Part Airplane, Part Hovercraft

June 30, 2025
great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.