‘Solar windows’ change from transparent to tinted at high temperatures, blocking the sun while generating electricity

For the smart buildings of the future.

Transparent solar technology could provide 40% of US power if deployed across all glass surfaces

There’s a huge untapped potential for solar energy across America’s shining skyscrapers.

Record-breaking silicon solar cell efficiency of 26.6% demonstrated by Japanese researchers, very close to the theoretical limit

We’re getting closer to the ideal silicon solar cell.

Swiss startup demoes residential solar panels twice as efficient than what the market has to offer

Another confirmation that solar energy is moving fast.

Photosynthetic solar cell turns carbon dioxide and sunlight into fuel

Fossil fuels could soon be a thing of the past.

You’ve heard all about solar cells, but what about bacterial solar cells?

On the desk of Seokheun “Sean” Choi sits a 3×3 array that at first glance looks like a lemon squeezer. It is, in fact, a solar panel but not like any you’ve seen or heard about before. Instead of using semiconductors like silicon crystals to convert sunlight into electricity, the array employs a complex system that nurtures cyanobacteria — beings whose metabolism create free electrons which can be harnessed.

Charge nano-map could help scientists turn perovskite into THE solar cell material

Despite solar cells made with perovskite recently crossed the 20 percent efficiency mark, researchers say there’s still room to improve if only they knew how charge flows at the nanometer scale. They just had to ask.

Finally, the metal wiring in solar cells might stop reflecting light. One up solar efficiency

There’s an inherent flaw in solar cells: the metal wiring that’s quintessential to harnessing the electrons reflects the incoming light, acting like a mirror. Now, must people would brush off this issue and leave it like that. It’s a necessary trade off. But a team at Stanford University devised an elegant chemical technique that basically hides the wiring with silicon, away from the light while preserving energy harnessing. Metal wires cover 5 to 10 percent of a solar cell’s surface. Now, in the same area more light can be absorbed, hence more electricity generated which jumps the efficiency. Of course, this also means cheaper solar panels — if only the chemical technique is covered by the recurring costs of increased efficiency.

Finally, a fully transparent solar energy harvester

University of Michigan researchers have devised what looks like the world’s first fully transparent solar cell. Think of all of those tall glass buildings; wouldn’t it be nice if all that incoming solar energy was harvested somehow? Likewise, why not let your smartphone charge up a bit while it’s taking a tan. Of course this isn’t a new idea, but previous attempts are rather unattractive because the compromise makes windows too shady or dark. After all, the purpose of a window is to let light in, not make energy. Ideally, you’d want them harness energy as well, complementary. The new system devised at UM is exciting because it offers exactly this: energy generation, with no compromise in visibility.

Concentrated photovoltaic, now on your rooftop

The most efficient solar cells are those that convert incoming concentrated solar power via lenses, the sort you see on the International Space Station or  in the sun-soaked Middle East where  Shams 1, a 100 MW CSP plant – the largest in the world –  operates, powering 20,000 United Arab Emirates homes. Because of their complex nature, concentrated solar power arrays have

A new way to harvest solar energy using metal nanoparticles and plasmon resonance

Solar cell technology has improved dramatically over the past couple of year, yet it will be a long time before multi-junction cells – then kind that can reach efficiency well over 40% – will become affordable to small home owners or even large scale installation. New methods are always explored, however, each with its own angle to harnessing solar energy, benefits

Solar cells etched with Blu-ray bit patterns absorb 21.8% more energy

Apart from both being shiny, it’s hard to see any connection between a Blu-ray disk and a solar panel. Northwestern University researchers thought outside the box, however, and used the disk’s tiny stamped grooves and pits to make molds for solar panels. Because of the resulting structure’s geometry, the solar cells were able to absorb 21.8% more light. Overall, the

One single scrap car battery could be turned into solar cells that power 30 homes

Lead-acid car batteries used to be the norm, but luckily we’re seeing a massive shift towards more efficient and environmentally friendly alternatives like lithium-ion. Still, there are fleets of hundreds of millions of cars that still employ these archaic and toxic batteries. Typically, manufacturers try to have car owners bring their old lead-acid batteries, which are then converted into more

Spray-coated solar cells bring solar power to every corner

Researchers at University of Sheffield demonstrate a perovskite spray-on solar cell for the first time. Also, this is the first time rated efficiency for a spray-on solar cell tops two figures in efficiency, marking an important milestone and breakthrough in the field.

New material allows ultra-thin, transparent solar cells

Austrlian researchers have successfully developed transparent, ultra-thin, foldable solar cells.

Popeye’s secret: spinach provides key insight that might one day lead to artificial photosynthesis

While scientists have been studying and incrementally increasing solar cell efficiency, we’ve yet to reach nature’s magnitude of solar energy conversion through photosynthesis. Artificial photosynthesis is a goal in alternative energy research, yet the process is extremely difficult to mimic since, in nature, the process involves numerous stages and transformation of matter and energy. Purdue University physicists used spinach and applied

Perovskite solar cells might help the solar market grow to new heights

A crystal known to science for more than a century has only in recent years become recognized for its use in harvesting solar power. Since the first successful usage of perovskite in solar cells in 2009, the advances in the field have grown exponentially over time, making it a potential candidate for revamping the solar industry. Indeed, the crystal might

New way to make affordable high efficiency stacked solar cells

Researchers at the University of Illinois at Urbana-Champaign report they’ve devised a new type of highly efficient solar cell that is potentially easier to manufacture and cheaper than cells of similar performance. The stacked cell allows photon energy to be garnered from across the whole solar spectrum, and this new design makes use of a novel technique which basically electrically

Excition fission model could vastly improve solar cell efficiency

The most basic principle of a solar cell is that it works by transferring the energy from an incoming photon (light) to a molecule, which causes one or more electrons to become displaced until an electrical current is formed. That’s the absolute gist of it, only besides electricity, some of the incoming photon energy gets lost as waste heat. Oddly

This material can be turned into a solar cell by day and light source by night

Scientists have made great efforts to discover a material that can be used to both absorb and emit light. A fluke may have suffice, since researchers at Nanyang Technological University (NTU) in Singapore discovered by accident a material that can be used to work as a solar panel, harnessing energy from the sun during the day, as well as a