Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Chemistry

Nature inspired solar cells based on tiny fractals might lead to improved efficiency

Tibi Puiu by Tibi Puiu
March 6, 2012
in Chemistry, Renewable Energy, Research

Fractal silver structures grown by electrochemical reduction of silver nitrate on a fluorine doped tin oxide film. (c) Frank Osterloh, UC Davis
Fractal silver structures grown by electrochemical reduction of silver nitrate on a fluorine doped tin oxide film. (c) Frank Osterloh, UC Davis

Trees employ a fractal structure of branches to twigs to spread a wide array of leaves for maximized sunlight collection. Similarly, chemists at University of California, Davis developed a set of microscopic “trees” made out of silver, which the researchers claim might well form the basis for   a new range of highly efficient solar cells in the future.

“We expect these structures will allow us to make better, more efficient solar cells,” said Professor Frank Osterloh, a principal investigator on the $100,000 grant.

The research team, led by Professor Frank Osterloh, developed the intricate structure of silver nitrate fractals after applying flourine doped tin oxide to silver salt. The electrochemical reaction led the silver nitrate  to grow into  a tiny tree like structure, as branches of silver 1-50th the width of a human hair are themselves branched, and smaller branches grow on those branches, forming a treelike pattern.

For a solar cell lab application, the silver fractals were coated with light-absorbing polymers. When light photons came into contact with the coating, short-lived electrons were born which produced holes in the polymer. This positively charge holes were collected through the silver branches of the tree-like structure, while the electrons move to the counterelectrode, thus creating an electrical potential.

Current commercially available solar cells have a maximum rated efficiency of around 20%. The UC Davis researchers now intend on building a much anticipated solar cell based on the tiny silver fractal structure, which they believe is set to render some impressive results already. We’ll see.

source

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Finally, the metal wiring in solar cells might stop reflecting light. One up solar efficiency
  2. Nano-tech solar cells reach 18.2% efficiency without anti-reflective layers
  3. Princeton nanomesh greatly increases the efficiency of organic solar cells
  4. Carbon nanotubes may help increase the efficiency of tomorrow’s solar cells
  5. New way to make affordable high efficiency stacked solar cells
Tags: solar cellsolar panel

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW