Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

Near Perfect Solar absorbing Material developed at MIT

Tibi Puiu by Tibi Puiu
October 1, 2014
in News, Renewable Energy, Technology

Researchers at MIT report they’ve developed a novel material that can absorb almost all incoming wavelengths of light and convert the energy into heat. The radiated heat emitted by the material can then be collected by photovoltaics for later conversion into electricity. The material is cheap to make using currently available manufacturing processes, can absorb light indifferent of the incident angle and can withstand high temperatures making it ideal for solar collectors where powers up to thousands of suns are concentrated.

Releasing heat to generate electricity

Cross section of the  metallic dielectric photonic crystal. Image: MIT
Cross section of the metallic dielectric photonic crystal. Image: MIT

The team engineered a  metallic dielectric photonic crystal which was fabricated on a 6” silicon wafer. Tiny nanocavities strategically placed allow the researchers to fine tune the absorption spectrum of the material. As a demonstration, the material was tuned to absorb virtually all incoming wavelengths of light, besides the longer-wavelength infrared portion of the solar spectrum which actually decrease the final energy that is re-emitted by the crystals – this is the useful energy scientists eventually want to recover into electricity through solar-thermophotovoltaic (STPV) arrays.

“It’s a very specific window that you want to absorb in,” says MIT postdoc Jeffrey Chou. “We built this structure, and found that it had a very good absorption spectrum, just what we wanted.”

The material is also well matched to existing manufacturing technology, according to the researchers.

“This is the first-ever device of this kind that can be fabricated with a method based on current … techniques, which means it’s able to be manufactured on silicon wafer scales,” Chou says.

Measured absorption spectrum for the MIT photonic crystal with and without an anti-reflection coating (ARC) for 85% of photon energies from .7 electron-volts (1771 nm, or near-IR) to 5 electron-volts (248 nm, or ultraviolet) wavelengths. Yellow represents the solar spectrum received through the Earth’s atmosphere. (Credit: J. Chou et al./Advanced Materials)
Measured absorption spectrum for the MIT photonic crystal with and without an anti-reflection coating (ARC) for 85% of photon energies from .7 electron-volts (1771 nm, or near-IR) to 5 electron-volts (248 nm, or ultraviolet) wavelengths. Yellow represents the solar spectrum received through the Earth’s atmosphere. (Credit: J. Chou et al./Advanced Materials)

To work as a solar energy converter, the array needs to withstand tremendous temperatures. Tests in the lab show it can endure a temperature of 1,000 degrees Celsius (1,832 degrees Fahrenheit) for a period of 24 hours without severe degradation. Another important strong point is that the material can absorb incoming light from any angle, which renders solar trackers useless in this respect. This greatly simplifies design and reduces cost.

“This is the first device that is able to do all these things at the same time,” Chou says. “It has all these ideal properties.”

Working devices demonstrated in the lab so far use ruthenium – a relatively expensive material. The MIT team is now looking for more cheaper alternatives, but according to them any kind of metal that can withstand high temperatures will do. Findings appeared in the journal Advanced Materials.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. This new shock-absorbing material protects like a metal but is light like foam
  2. New MIT material can soak up solar heat and release it on demand
  3. When South African bees reproduce asexually, they make near-perfect clones of themselves
  4. Ultra-speed camera developed at MIT can “see” around corners
  5. Ground-breaking ‘Ultra-bright Atom Laser’ Developed in Crete – 7 times stronger than any developed to date
Tags: solar energysolar panel

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW