Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Environment → Green Living

Liquid air could be used to store renewable energy

Tibi Puiu by Tibi Puiu
May 21, 2013
in Green Living, Renewable Energy

Renewable energy sources, like wind and solar, are gaining ground fast against fossil fuels in terms of energy production, but unfortunately not that fast as we’d hoped for. One big obstacle in the way of renewable energy is storage. A refined look at an older idea that dates back from the XIX century seeks to address this issue. Namely, engineers are currently entertaining the possibility of using liquefied air as an energy storage medium.

Using electricity to cool down air to about 200 °C below zero, air enters its liquid form. When its energy needs to released, it is just allowed to warm. The air’s expansion can be used to drive a steam turbine and generator to produce immediate useful electricity.

liquefied air plant

When the idea was first proposed by inventor Charles Tripler around the 1890s it garnered a great of attention from the press of the time. Many investors flocked and handed out money to see the project rise, however, Tripler wasn’t entirely honest about his process and the concept proved to be so inefficient that it brought many men to bankruptcy.

The new refined system is developed by  Highview Power Storage of London, which has already raised $18 million for a prototype plant, in collaboration with  Messer, the large industrial gas company.

Using modern technology, the process has been refined to the point where it is nearly 50 to 60 percent efficient – that’s to say that it can output half of the electricity that goes in to cool the air. Batteries are 90% efficient, however the liquid air can be tapped using low-temperature waste heat from power plants or even data centers can be used to help warm up the liquefied air. The system can also last for decades, while batteries typically need to be replaced every few years or so, further reducing overall costs in the long run.

The process follows a number of stages:

  1. “Wrong-time electricity” is used to take in air, remove the CO2 and water vapour, which would otherwise freeze solid
  2. the remaining air, mostly nitrogen, is chilled to -190C (-310F) and turns to liquid – this provides a compact storage medium that can later draw energy in the form of heat from the environment
  3. the liquid air is held in a giant vacuum flask until it is needed
  4. when demand for power rises, the liquid is warmed to ambient temperature. As it vapourises, the expanding gas drives a turbine to produce electricity – no combustion is involved.

Perhaps the biggest shortcoming of solar and wind power is their intermittency, and since they can’t supply power that is available on demand (firm power) they must be backed up by power sources that can provide power when the sun isn’t shining and the wind isn’t blowing. In the near term, natural-gas power plants and fast-responding storage technologies such as batteries can keep the grid stable, which is how they’re used today, however these aren’t efficient in the longrun. You need something with a high energy density, that is long lasting and cheap.

“When we’re looking at energy storage mechanisms, we’re looking for something that’s based on extremely low-cost materials and very simple processes we can do in bulk,” says Haresh Kamath, program manager for energy storage at the Electric Power Research Institute. “And this certainly fits the bill.”

If the liquefied air pilot plant run well enough, the UK government will most likely fund a larger system. It certainly looks promising.  Meanwhile, the engineering consultancy Ricardo is developing two types of engines that could use liquid nitrogen, based on technology from a Highview Power spinoff called Dearman Engine.

via Tech Review

Was this helpful?


Thanks for your feedback!

Related posts:
  1. National Renewable Energy Laboratory: Solar Has The Most Potential Of Any Renewable Energy Source
  2. Underwater balloons could help us store renewable energy
  3. Military energy report downplays oil in favor of renewable energy
  4. World’s primary energy source will be renewable energy by 2030
  5. Denmark wants to build two energy islands to supply more renewable energy to Europe
Tags: liquefied airsolar energywind energy

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW