Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

Spray-coated solar cells bring solar power to every corner

Researchers at University of Sheffield demonstrate a perovskite spray-on solar cell for the first time. Also, this is the first time rated efficiency for a spray-on solar cell tops two figures in efficiency, marking an important milestone and breakthrough in the field.

Tibi Puiu by Tibi Puiu
August 6, 2014
in News, Renewable Energy

Solar cells don’t necessarily come in bulky, sandwich panels you see hang up most roofs. There are a myriad of solutions at your disposal: thin or ultrathin cells, organic cells, flexible cells, you name it. Perhaps the most versatile option, in theory at least, is a spray-on solar cell. Image having a solar cell active solution in a can. You can then turn virtually any surface fitted with electrodes into a solar power source. It’s really amazing, but what it makes in ingenuity, it lacks in efficiency. Researchers at University of Sheffield  aim to change all this, after they report they’ve for the first time developed perovskite solar cells using a spray-on process. The resulting cells are efficient and affordable.

Solar power in a can

An artist's impression of spray-coating glass with the polymer to create a solar cell. Image: Energy and Environmental Science
An artist’s impression of spray-coating glass with the polymer to create a solar cell. Image: Energy and Environmental Science

A while ago, I wrote a bit about how perovskite might significantly boost the solar power market. Discovered for its solar power conversion capabilities just a couple of years ago, research into perovskite solar cells have so far rendered fantastic results. In just a couple of years, rated efficiency has jumped from 3.8% to over 19%.  Cheap, readily available and easy to make, perovskite is regarded as a viable candidate for complementing or replacing silicon at the helm of solar cell materials, because it takes less energy to make. Currently silicon solar cells, the mainstream type, have a rated efficiency of over 25%.

Paint-on or spray-on solar cells aren’t exactly new. Either using quantum dots or some other kind of solutions, spray-on solar cells have been very interesting to watch, but not that interesting to use. Expensive and with a low efficiency, they showed little practical use apart from show and tell. Experts at University of Sheffield have now developed  spray-painting method to produce solar cells using perovskite.

Lead researcher Professor David Lidzey said: “There is a lot of excitement around perovskite based photovoltaics.”
“Remarkably, this class of material offers the potential to combine the high performance of mature solar cell technologies with the low embedded energy costs of production of organic photovoltaics.”

Previously, the researchers demonstrated a spray-on manufacturing process for organic semiconductors. Adapting the process, the researchers created devices with a perovskite absorber instead of an organic absorber, and reached much higher efficiency – around 11%. This is huge, considering no spray-on method has led to cells topping two figures in efficiency.

Professor Lidzey said: “This study advances existing work where the perovskite layer has been deposited from solution using laboratory scale techniques. It’s a significant step towards efficient, low-cost solar cell devices made using high volume roll-to-roll processing methods.”
Solar power is becoming an incr

Findings appeared in the journal Energy & Environmental Science.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. You’ve heard all about solar cells, but what about bacterial solar cells?
  2. Sugar-coated scaffolding guides and differentiates stem cells
  3. One single scrap car battery could be turned into solar cells that power 30 homes
  4. Perovskite solar cells might help the solar market grow to new heights
  5. Finally, the metal wiring in solar cells might stop reflecting light. One up solar efficiency
Tags: perovskitesolar cellsolar panel

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW