ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Psychology

Scientists quantify human intelligence for first time ever using MRI scans

A particular pattern in the human brain is connected to higher levels of intelligence.

Tyler MacDonaldbyTyler MacDonald
July 22, 2016
in Mind & Brain, Psychology, Research, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

AI spots thousands of craters on the Moon — including over 6,000 previously undiscovered ones
These small flying robots could be the pollinators of the future
Biology imparts us with instinctive color categories — culture only shapes them
Scientists present device that transforms brain activity into speech
Image credit Pixabay
Image credit Pixabay

Human intelligence is a tricky subject – many believe that the results of standard intelligence tests should be taken with a grain of salt due its various facets that are difficult to quantify, while others believe in using universal standards.

Now, for the first time ever, a team of researchers from the University of Warwick has defined and measured human intelligence using data from a study that quantifies the brain’s unique functions. The study identified the various parts of the brain, how they interact at different times, and how this information is related to intellect, revealing that variability in brain function is connected to higher levels of intelligence and creativity.

Using magnetic resonance imaging (MRI), the team behind the study examined resting-state brain scans from people all around the world and found that areas of the brain that are connected to intelligence show higher levels of variability compared to areas not associated with intelligence. In particular, the data showed that regions of the brain connected to intelligence experience frequent changes in their neural connections to other regions of the brain, with changes taking place in a matter of minutes or seconds.

“Human intelligence is a widely and hotly debated topic and only recently have advanced brain imaging techniques, such as those used in our current study, given us the opportunity to gain sufficient insights to resolve this and inform developments in artificial intelligence, as well as help establish the basis for understanding and diagnosis of debilitating human mental disorders such as schizophrenia and depression,” said Jianfeng Feng of the University of Warwick and senior author of the study.

In addition to presenting the possibility of better understanding human mental health, the data could also help us further advance artificial intelligence (AI) systems, which currently do not possess the level of variability and adaptability seen in the human brain. Further research could help us create AI systems with neural networks that can grow and adapt in a way that mirrors the human brain’s intelligence and learning capabilities.

Journal Reference: Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. 14 July 2016. 10.1093/brain/aww143

Tags: AIartificial intelligencebrainhuman intelligencemagnetic resonance imagingmental illnessmrivariability

ShareTweetShare
Tyler MacDonald

Tyler MacDonald

Psychology major and writer with an interest in all things science.

Related Posts

Future

GPT-5 is, uhm, not what we expected. Has AI just plateaued?

byMichael Rovatsos
1 day ago
Health

AI Can Hear Cancer in the Voice Before Doctors Can Detect It

byMihai Andrei
4 days ago
Future

Illinois Just Became the First State to Ban AI From Acting as a Therapist

byTudor Tarita
1 week ago
News

Scientists Gave People a Fatty Milkshake. It Turned Out To Be a “Brain Bomb”

byChris Marley
1 week ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.