ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

We’ve found the genetic key to making red blood cells

Researchers from Lund University in Sweden and the Center of Regenerative Medicine in Barcelona have identified four sequences of genetic code that can reprogram mice skin cells to produce red blood cells. If this method can be used on human tissues, it would provide a reliable source of blood for transfusions and people with anemia.

Alexandru MicubyAlexandru Micu
June 6, 2016
in Biology, Discoveries, Diseases, Genetics, Health, News, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers from Lund University in Sweden and the Center of Regenerative Medicine in Barcelona have identified four sequences of genetic code that can reprogram mice skin cells to produce red blood cells. If this method can be used on human tissues, it would provide a reliable source of blood for transfusions and people with anemia.

Red blood cells are the most common cells in the human body, and are necessary in order to transport oxygen and carbon dioxide.
Image via pixabay

While (almost) each of us has a unique genetic make-up, it’s a different story for our cells. DNA holds the entirety of the body’s genetic information, and all of an individual’s cells contain exactly the same DNA strands nestled in their nucleus.

It’s an all-encompassing instruction manual, and everything that our bodies can do — from growing hair and nails to developing the brains that allow you to read this now — is written down in it. But then, why aren’t all out cells identical?

Well, cells differentiate because each one only has access to certain parts of this database; they’re allowed to read the chapters that explain how to do their particular job. The Lund research group wanted to find out if cells can be coaxed into accessing different chapters of DNA — specifically, the one governing the production of erythrocytes, or red blood cells.

“We have performed this experiment on mice, and the preliminary results indicate that it is also possible to reprogram skin cells from humans into red blood cells,” says Johan Flygare, manager of the research group and in charge of the study.

“One possible application for this technique is to make personalised red blood cells for blood transfusions, but this is still far from becoming a clinical reality.”

The team used a retrovirus to add combinations of over 60 genes into the skin cells’ genome, then culturing them to see the results. One day, the team found that their cultured cells had converted to red blood cells.

“This is the first time anyone has ever succeeded in transforming skin cells into red blood cells, which is incredibly exciting,” says Sandra Capellera, doctoral student and lead author of the study.

The study found that out of 20,000 genes, only four are necessary to reprogram skin cells to start producing red blood cells. But you have to use all four in order for it to work.

“It’s a bit like a treasure chest where you have to turn four separate keys simultaneously in order for the chest to open,” explains Sandra.

The discovery is significant from several points of view. Biologically, it will help us better understand the systems that govern cells and their differentiation, paving the way for future cellular applications. From a more practical standpoint, this finding could provide an answer to the ever-growing need for blood donors, as Johan Flygare explains:

RelatedPosts

Some parasitic plants can steal genes then use them against their hosts
Denying cancer cells one key amino acid might destroy treatment-resistant tumors
Scientists create artificial skin that sprouts new hairs and sweats
What Are Five Stages of Mitosis?

“An aging population means more blood transfusions in the future. There will also be an increasing amount of people coming from other countries with rare blood types, which means that we will not always have blood to offer them.”

There are millions of people in the world suffering from anemia, or insufficient blood cells. Patients with chronic anemia are among the most problematic, as they require regular blood transfusions from various donors. In some rare cases, the patient can develop a negative response to the blood — they become allergic to it. But this method would allow to create blood for a patient starting with their own cells. Their blood, for all intents and purposes.

However, further studies on how the generated blood performs in living organisms are needed before that, the team says.

The full paper, titled “Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion” has been published online in the journal Cell Reports and can be read here.

Tags: anemiabloodcellsdnagenesskinTransfusion

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Genetics

Scientists Gave a Mouse a Stretch of Human DNA and Its Brain Grew 6% Bigger

byTudor Tarita
3 weeks ago
Genetics

Scientists Close to Finding Leonardo da Vinci’s DNA Using a 21-Generation Family Tree

byTibi Puiu
3 weeks ago
Anthropology

Scientists Found a Neanderthal Population That Lived in Total Isolation for 50,000 Years

byTudor Tarita
3 weeks ago
Genetics

Scientists Blasted Human Cells With 5G Radiation and the Results Are In

byTibi Puiu
4 weeks ago

Recent news

Big Tech Said It Was Impossible to Create an AI Based on Ethically Sourced Data. These Researchers Proved Them Wrong

June 12, 2025

This Is How the Wheel May Have Been Invented 6,000 Years Ago

June 12, 2025

So, Where Is The Center of the Universe?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.