ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Mind & Brain

Biology imparts us with instinctive color categories — culture only shapes them

Color is hardwired into the brain.

Alexandru MicubyAlexandru Micu
May 9, 2017
in Mind & Brain, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Although different cultures go about ordering colors into different systems, all babies seem to share a set of common, instinctive color categories.

Researchers have a pretty good grasp of how humans see colors. Different wavelengths of light reflected by various objects go through the pupil and lands on the retina, where specialized cells (known as cones) pick up on either short, medium, or long wavelengths. They send this information up to the brain where it all gets put together and processed into the final image we see.

Color Dots.

But although every human out there sees the same way, we have different systems for explaining what we see. Some languages, like Japanese, don’t necessarily make the distinction between green and blue, two colors which most of you reading this take as obviously distinct. Culture has a big part to play in shaping how we group colors, but previous research has also shown that babies also have a kind of built-in color category system.

So how do these two fit together?

To find out, a team from the University of Sussex has studied the responses of 176 babies aged between four to six months to patches of color. They report that while cultural context does play a part, our brains are naturally inclined to bunch colors up into five basic categories.

Colorama

The infants were seated in front of a wooden booth which had two windows cut out at the sides. Initially, both windows repeatedly showed the same color, but as the experiment progressed, one of them was filled with a different color at random. This new pairing was then shown multiple times, and the babies were recorded with a webcam to capture their reaction. Each baby was shown only one pair of different colors, with at least 10 babies tested for each pair.

RelatedPosts

Scared? Here’s how your brain decides whether you freeze, flee, or fight
How the brain keeps your heat and water balance
Storing info in computers frees up memory in the brain, helping us learn new things better
Brain-to-brain interface allows first telepathic exchange of information between two humans

“We wanted to find out what’s the connection between two [color categories and groupings], what is it that babies are using to make their colour categories and what can that tell us about the way we talk about colour as adults,” said said Alice Skelton, first author of the research and a doctoral candidate at the University of Sussex.

The team was looking for a phenomenon known as novelty preference in the babies — the infants will look at the second color for more if they perceive it to be different from the first-shown color. So if babies consistently look more time at the new color, even if they’re really close together on the color spectrum, that would suggest that our brains perceive it as belonging to a different category.

Some of the infants were shown very similar pairs of colors, while others were shown pairings farther apart on the color spectrum, to get a feel for where their boundaries of color categories fell. Fourteen different colors throughout the color spectrum and of the same lightness were used in total. The results show that babies order colors under five basic categories: red, yellow, green, blue, and purple.

The next step was to compare these categories to color groupings in English and 110 other nonindustrialized languages. There were obviously several differences in the way different cultures went about ordering color (such as different numbers of categories, their placement on the spectrum, and exact boundaries) but overall, their systems tied well with the five categories the team found.

Build-in color

“Infants’ categorical distinctions aligned with common distinctions in color lexicons and are organized around hues that are commonly central to lexical categories across languages,” the authors write.

“The boundaries between infants’ categorical distinctions also aligned, relative to the adaptation point, with the cardinal axes that describe the early stages of color representation in retinogeniculate pathways, indicating that infant color categorization may be partly organized by biological mechanisms of color vision.”

What’s more, four of the color boundaries the infants exhibited mapped the four extremes signals from the cone cells can produce when they are processed and interpreted in the brain. Taken together, these findings suggest that biology creates our color categories, and environmental as well as cultural factors shape them afterward — if your language doesn’t differentiate between green and blue, for example, babies learn not to make that distinction either as they age.

The findings are important as they lend a lot of weight to the color universality theory since infants show a definite color categorical structure long before they learn the words for them.

But the paper isn’t without its limitations. First off, there is a possibility that the colors the babies were exposed to from birth, for example in toys or wallpaper colors, could have determined their brain to create certain color categories. Since the study included only children from the UK, they were likely to have lived in similar conditions and be exposed to roughly the same color schemes. Retaking the test with children from other cultures should show whether these five categories are learned or instinctual.

The team now hopes to explore how our categories shift as we develop language.

The paper “Biological origins of color categorization” has been published in the journal Proceedings of the National Academy of Sciences.

Tags: babybrainCategoriesColorperception

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

Scientists Gave People a Fatty Milkshake. It Turned Out To Be a “Brain Bomb”

byChris Marley
1 week ago
Health

Older Adults Keep Their Brains up to Two Years ‘Younger’ Thanks to This Cognitive Health Program

byTudor Tarita
2 weeks ago
Mind & Brain

Your Brain Gives Off a Faint Light and It Might Say Something About It Works

byTibi Puiu
3 weeks ago
Health

New Blood Test Reveals How Fast Your Organs Are Aging. Your Brain’s Biological Age May Hold the Key to How Long You Live

byTibi Puiu
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.