ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Wooden buildings could help stabilize the climate

It all depends on where we get the timber, though.

Alexandru MicubyAlexandru Micu
January 28, 2020
in Climate, Environment, Materials, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Replacing steel and concrete with wood could help in our efforts to stabilize the climate, a new paper reports. The shift would slash emissions generated by the production of such materials and further acts as a carbon sink.

Image via Pixabay.

Despite the advantages of using wood over other materials in construction, the findings should be taken with a grain of salt: harvesting enough timber for all buildings could place huge pressure on the environment. The authors thus caution that sustainable forest management and governance is key to the success of such a shift.

Going back to the basics

“Urbanization and population growth will create a vast demand for the construction of new housing and commercial buildings — hence the production of cement and steel will remain a major source of greenhouse gas emissions unless appropriately addressed,” says the study’s lead-author Dr. Galina Churkina from the Potsdam Institute for Climate Impact Research in Germany (PIK).

For the study, the team analyzed four different scenarios spanning thirty years into the future. The business as usual scenario considered that only 0.5% of all new buildings constructed by 2050 will be made out of timber. The second and third scenarios considered that figure to sit at 10% and 50% respectively, to simulate a mass transition towards timber. The final scenario considered that 90% of all new buildings will be constructed out of wood, simulating what would happen if even underdeveloped countries make the transition towards this building material.

The first scenario could store around 10 million tons of carbon per year, while the last would be close to 700 million tons. The team explains that reductions in cement and steel production would help further reduce emissions, which currently sit at around 11,000 million tons of carbon per year. Assuming that steel and concrete would still be in use (scenario 2 and 3) and assuming an increase in floor area per person, as has been the trend up to now, the team estimates that timber buildings could slash up to 20% of the CO2 emissions budget by 2050 by reducing emissions from building material manufacturing. The carbon budget is the quantity of CO2 emissions we can release and still meet the 2°C threshold set by the Paris agreement.

The authors argue that society needs some kind of effective CO2 sink to meet this budget to counteract hard-to-avoid emissions, such as those from agriculture. A five-story building made of laminated timber can store up to 180 kilos of carbon per square meter, they explain, which is around three times more than what a natural forest could hold. However:

“Protecting forests from unsustainable logging and a wide range of other threats is key if timber use was to be substantially increased,” explains co-author Christopher Reyer from the PIK. “Our vision for sustainable forest management and governance could indeed improve the situation for forests worldwide as they are valued more.”

Currently, the team estimates, unexploited wood resources would cover the demands of the 10% scenario. If floor area per person remains as it is now worldwide, the 50% or even 90% scenario could be feasible. An important goal here is to reduce the use of wood as fuel to free it up for use as a construction material.

Reducing the use of roundwood for fuel — currently roughly half of the roundwood harvest is burnt, also adding to emissions — would make more of it available for building with engineered timber. Moreover, re-using wood from demolished buildings can add to the supply.

RelatedPosts

Limpet Teeth May Be World’s Strongest Material
Lego will start making its first sustainable pieces, replacing plastic
Scientists just made butter from air — and it’s hitting the market
How Roman priests walked through the “Gates to Hell” — and came back

“There’s quite some uncertainty involved, yet it seems very worth exploring,” says Reyer. “Additionally, plantations would be needed to cover the demand, including the cultivation of fast-growing Bamboo by small-scale landowners in tropical and subtropical regions.”

The paper “Buildings as a global carbon sink” has been published in the journal Nature Sustainability.

Tags: co2materialTimberwood

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

Dinosaur Teeth Help Scientists Recreate the Air Dinosaurs Once Breathed

byTibi Puiu
2 weeks ago
a tall building made from timber
Environmental Issues

What If We Built Our Skyscrapers from Wood? It’s Just Crazy Enough to Work (And Good for the Planet)

byMihai Andrei
3 weeks ago
Biology

These fig trees absorb CO2 from the air and convert it into stone

byMihai Andrei
1 month ago
Chemistry

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

byRupendra Brahambhatt
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.