ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

A fungus from Chernobyl could protect astronauts from radiation

It can covert radioactive energy into chemical energy

Fermin KoopbyFermin Koop
July 29, 2020 - Updated on February 17, 2023
in News, Science, Space, Space flight
A A
Share on FacebookShare on TwitterSubmit to Reddit

A fungus found on the ruins of the Chornobyl nuclear power plant could protect astronauts from cosmic radiation, the greatest hazard for humans on deep-space exploration missions.

The International Space Station. Credit Wikipedia Commons

Scientists have long been trying to find solutions to the radiation caused by long-duration deep-space missions. Several options have been on the table including a Star Trek-like deflector shield and manufacturing radiation-shielding bricks made from the Martian regolith (soil).

The problem is starting to become urgent, as space agencies are getting serious about sending humans to the Moon by 2024 under the Artemis program and promises of crewed missions to Mars in the near future. A 360-day round trip to the red planet would expose unprotected astronauts to the equivalent of two-thirds of their allowable lifetime radiation exposure — simply put, it would be too much radiation for a safe journey.

But this could be prevented thanks to an extremophile fungus known as Cladosporium sphaerospermum. The organism was first discovered in 1886 and now it has been found growing in radioactive environments, including the cooling pools of the Chernobyl nuclear plant.

The fungus, melanized and radiothropic, is capable of converting radioactive energy into chemical energy, which it does using melanin pigments inside its cell walls. It is analogous to photosynthesis, in which plants convert energy from visible light to useful energy.

Considering the fungus’ appetite for radiation, Nils Averesch, a co-author of the study and a scientist at NASA Ames Research Center, created an experiment to establish how much radiation this organism might absorb while in space. He and his team also wanted to evaluate its suitability as a medium for a radiation shield.

Researchers grew Cladosporium sphaerospermum mold on the left sides of petri dishes

The venue for the experiment was the International Space Station (ISS), which features a unique radiation environment not unlike the surface of Mars. The astronauts aboard the ISS divided a petri dish in half, one side with the fungus and the other one empty as he negative control. The fungi grew for 30 days, as the astronauts constantly monitored the radiation levels.

RelatedPosts

Crystal-Rich Rock ‘Mojave’ is Next Mars Drill Target
Hunting for exoplanets: past and future
Radar images of an asteroid during its closest flyby
Help NASA save the ocean’s corals by playing a new video game

The results showed that the fungi were capable of adapting to the microgravity environment of low Earth orbit quickly and were able live off of the incoming radiation. The researchers found a 1.7-millimeter-thick layer of growth blocking radiation somewhere between 1.82% to 5.04% compared to the negative control group. Not only did the fungi survive — it thrived.

“In the experiment, we were able to prove that the fungus does not only thrive on ionizing radiation on Earth but also in space,” Averesch said in a press release. “In addition to not being destroyed by the radiation… the fungus does, in fact, reduce radiation of the measured spectrum.”

The researchers agree that a fungal lawn measuring 8.2 inches (21 centimeters) thick could “could largely negate the annual dose-equivalent of the radiation environment on the surface of Mars,” as they wrote in the study. The fungus is ranked as “among the most effective radiation attenuators.” The fungus is a self-sustaining, self-replicative substrate capable of living off even the smallest doses of radiation and biomass, the researchers found. It can also be grown on many different carbon sources, such as organic waste.

It’s a promising solution for astronauts in space, but more tests will be needed to confirm these results.

The study was published in the journal bioRxiv.

Tags: International Space StationMarsnasaradiation

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

Geology

Scientists Used Lasers To Finally Explain How Tiny Dunes Form — And This Might Hold Clues to Other Worlds

byKimberly M. S. Cartier
4 days ago
News

Terraforming Mars Might Actually Work and Scientists Now Have a Plan to Try It

byTibi Puiu
1 week ago
News

A Decade After The Martian, Hollywood’s Mars Timeline Is Falling Apart

byAri Koeppel
3 weeks ago
Future

NASA Captured a Supersonic Jet Breaking the Sound Barrier and the Image Is Unreal

byTibi Puiu
2 months ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.