Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science

A fungus from Chernobyl could protect astronauts from radiation

It can covert radioactive energy into chemical energy

Fermin Koop by Fermin Koop
February 17, 2023
in News, Science, Space, Space flight

A fungus found on the ruins of the Chornobyl nuclear power plant could protect astronauts from cosmic radiation, the greatest hazard for humans on deep-space exploration missions.

The International Space Station. Credit Wikipedia Commons

Scientists have long been trying to find solutions to the radiation caused by long-duration deep-space missions. Several options have been on the table including a Star Trek-like deflector shield and manufacturing radiation-shielding bricks made from the Martian regolith (soil).

The problem is starting to become urgent, as space agencies are getting serious about sending humans to the Moon by 2024 under the Artemis program and promises of crewed missions to Mars in the near future. A 360-day round trip to the red planet would expose unprotected astronauts to the equivalent of two-thirds of their allowable lifetime radiation exposure — simply put, it would be too much radiation for a safe journey.

But this could be prevented thanks to an extremophile fungus known as Cladosporium sphaerospermum. The organism was first discovered in 1886 and now it has been found growing in radioactive environments, including the cooling pools of the Chernobyl nuclear plant.

The fungus, melanized and radiothropic, is capable of converting radioactive energy into chemical energy, which it does using melanin pigments inside its cell walls. It is analogous to photosynthesis, in which plants convert energy from visible light to useful energy.

Considering the fungus’ appetite for radiation, Nils Averesch, a co-author of the study and a scientist at NASA Ames Research Center, created an experiment to establish how much radiation this organism might absorb while in space. He and his team also wanted to evaluate its suitability as a medium for a radiation shield.

Researchers grew Cladosporium sphaerospermum mold on the left sides of petri dishes

The venue for the experiment was the International Space Station (ISS), which features a unique radiation environment not unlike the surface of Mars. The astronauts aboard the ISS divided a petri dish in half, one side with the fungus and the other one empty as he negative control. The fungi grew for 30 days, as the astronauts constantly monitored the radiation levels.

The results showed that the fungi were capable of adapting to the microgravity environment of low Earth orbit quickly and were able live off of the incoming radiation. The researchers found a 1.7-millimeter-thick layer of growth blocking radiation somewhere between 1.82% to 5.04% compared to the negative control group. Not only did the fungi survive — it thrived.

“In the experiment, we were able to prove that the fungus does not only thrive on ionizing radiation on Earth but also in space,” Averesch said in a press release. “In addition to not being destroyed by the radiation… the fungus does, in fact, reduce radiation of the measured spectrum.”

The researchers agree that a fungal lawn measuring 8.2 inches (21 centimeters) thick could “could largely negate the annual dose-equivalent of the radiation environment on the surface of Mars,” as they wrote in the study. The fungus is ranked as “among the most effective radiation attenuators.” The fungus is a self-sustaining, self-replicative substrate capable of living off even the smallest doses of radiation and biomass, the researchers found. It can also be grown on many different carbon sources, such as organic waste.

It’s a promising solution for astronauts in space, but more tests will be needed to confirm these results.

The study was published in the journal bioRxiv.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. Israeli company designs anti-radiation body armor to protect astronauts in space
  2. Radiation in the Marshall Islands, where the U.S. tested nuclear weapons, is higher than in Chernobyl
  3. Russian military seizes control of Chernobyl. Radiation levels higher than normal. Should we worry?
  4. This Chornobyl fungus thrives in radioactivity and eats radiation
  5. Space radiation might cause bone loss in astronauts
Tags: International Space StationMarsnasaradiation

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW