ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Animals

Squishy robot camouflages itself effortlessly and blends in [VIDEO]

Tibi PuiubyTibi Puiu
August 17, 2012
in Animals, Robotics, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

A group of students creates a graffiti-drawing robot, and it’s quite good at making art
World’s first octopus farm is moving ahead despite grave scientific concern
Six major tech companies pledge not to weaponize AI, but will politicians follow their lead?
Fossil Friday: ancient squid caught in stone while munching on a fish

Camouflage robot

After UAVs inspired by hawks, robotic stability control spun from leaping lizards, wall climbing derived from geckos or the swimming artificial jellyfish made from rat cells,  in yet another remarkable feat of robotics which draws inspiration from nature scientists at Harvard University  have created a robot which mixes the blending capabilities of a squid with the locomotion mechanics of a sea creature.

“We began with the fundamental science question of, ‘Can we make a soft-bodied robot in a very primitive way?’ ” says George Whitesides of Harvard, co-author of the new study in Science this week.

The robot employs a dynamic coloring system, based on micro-channels into which dye is being pumped. These color layers used for the camouflage were first created using molds from 3D printers. Silicone is then poured into the molds to create these micro-channels, topped with another layer of silicone. In all, it takes 30 seconds for the robot to fill with color and another 30 seconds for it to drain – a full minute to completely blend into its surroundings or, oppositely, stand out.

“When we began working on soft robots, we were inspired by soft organisms, including octopi and squid,” says post-doctoral fellow Stephen Morin.

“One of the fascinating characteristics of these animals is their ability to control their appearance, and that inspired us to take this idea further and explore dynamic coloration. I think the important thing we’ve shown in this paper is that even when using simple systems – in this case we have simple, open-ended micro-channels – you can achieve a great deal in terms of your ability to camouflage an object, or to display where an object is.”

Applications for the robot, according to the researchers, include surgical simulation, planning, and training. In medical training today, most practice is made on real tissue, however a disposable artificial tissue which can mold and change color  according to the organ or tissue it needs to simulate might aid in efforts. Also, when filled with florescent dye, the robot becomes distinctly visible acting as a visual marker for search crews following a disaster. The same micro-channels are pumped in or out with air to allow for locomotion, much similar to how a starfish moves in the ocean.

Also, the squishy robot’s camouflage capabilities aren’t limited to visible spectrum. It can change its temperature and thus become invisible to infrared as well, or again stand out for infrared scanners. Or one could hide an object in the visible spectrum and illuminate it in infrared.

“What we hope is that this work can inspire other researchers to think about these problems and approach them from different angles,” Morin says.

“There are many biologists who are studying animal behavior as it relates to camouflage, and they use different models to do that. We think something like this might enable them to explore new questions, and that will be valuable.”

via Popular Mechanics

Tags: octopusrobotsquid

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

AI-Powered Surgical Robot Performed a Full Operation With Zero Help From Humans

byTudor Tarita
1 month ago
octopus sleeping
Animals

Octopuses use microbes to “taste” their surroundings with their arms

byMihai Andrei
2 months ago
Health

In the UK, robotic surgery will become the default for small surgeries

byMihai Andrei
2 months ago
Animals

These Male Octopuses Paralyze Mates During Sex to Avoid Being Eaten Alive

byTudor Tarita
4 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.