Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Science Biology

Muscle-driven tiny biobots can walk on command

Tibi Puiu by Tibi Puiu
July 2, 2014
in Biology, Research, Robotics
Reading Time: 2 mins read
A A
Share on FacebookShare on TwitterSubmit to Reddit
Photo:  University of Illinois
Photo: University of Illinois

Rashid Bashir, the head of bioengineering at the University of Illinois at Urbana-Champaign, is one of the pioneers leading a new field of robotics which deals
with bio-bots. These tiny robots, less than a centimeter in size, combine biological and mechanical components to meet a certain purpose. Recently, Bashir and his team demonstrated a bio-bot that’s powered by muscle cells and controlled with electrical pulses, giving researchers unprecedented command over their function.

Biological machines are making their first baby slides

Previously, the team demonstrated bio-bots powered by beating heart cells from rats. Unfortunately, heart cells introduce a lot of limitations because the cells constantly contract. Desirably, you want full control over your bio-bots, including an on-off switch.

The latest version uses a strip of skeletal muscle cells, backed by 3-D printed hydrogel structure. Together, they form a bio-bot similar to the muscle-tendon-bone complex found in nature, which can be activated by electrical impulses. This gives the researchers a simple way to control the bio-bots and opens the possibilities for customize bio-bots for specific applications.

ADVERTISEMENT

“Skeletal muscles cells are very attractive because you can pace them using external signals,” Bashir said. “For example, you would use skeletal muscle when designing a device that you wanted to start functioning when it senses a chemical or when it received a certain signal. To us, it’s part of a design toolbox. We want to have different options that could be used by engineers to design these things.”

The video below shows how the muscle-driven bot works and behaves. To speed it up, the researchers only had to adjust the frequency of the electric pulses. A higher frequency causes the muscle to contract faster, thus speeding up the bio-bot’s progress.

Sorry to interrupt, but you should really...

...Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

These bio-bots might not seem like very much, but they’re the first in a new generation of biological machines that could aid in drug delivery, surgical robotics, ‘smart’ implants, or mobile environmental analyzers, among countless other applications. According to the team involved, future versions will integrate neurons so
the bio-bots can be steered in different directions with light or chemical gradients.

ADVERTISEMENT

“This work represents an important first step in the development and control of biological machines that can be stimulated, trained, or programmed to do work,” said said graduate student Caroline Cvetkovic, co-first author of the paper.

Tags: biological machinerobot
ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines.

ADVERTISEMENT
ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.