Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Environment → Animals

Scientists design ‘Pokéball’ that safely captures even the most delicate underwater creatures

Gotta catch em all!

Tibi Puiu by Tibi Puiu
July 18, 2018
in Animals, News

The rotary actuated dodeahedron (RAD) sampler has five origami-inspired “petals
The rotary actuated dodeahedron (RAD) sampler has five origami-inspired “petals”, which fold up to capture a soft-bodied marine organism, such as a jellyfish. Credit: Wyss Institute at Harvard University.

You better look out, Squirtle! Researchers at Harvard University and the Radcliffe Institute for Advanced Study recently demonstrated an origami-inspired polyhedral enclosure that can capture and release delicate sea creatures, such as jellyfish or squidsf, without causing any harm.

Gotta catch em all! 

In order to study marine creatures, researchers often have to rely on bulky underwater equipment that isn’t suited for the capture of soft-bodied creatures, which all too frequently get hurt or even killed.

“We approach these animals as if they are works of art: would we cut pieces out of the Mona Lisa to study it? No – we’d use the most innovative tools available. These deep-sea organisms, some being thousands of years old, deserve to be treated with a similar gentleness when we’re interacting with them,” said collaborating author David Gruber, who is a Radcliffe Fellow and Professor of Biology and Environmental Science at Baruch College, CUNY.

The idea for a pokéball-like robotic device was seeded by first author Zhi Ern Teoh, who during his stint at the Harvard Graduate School of Design was studying folding mechanisms through computational means. Brennan Phillips, who used to work in the same lab at Harvard’s Wyss Institute, saw some of Teoh’s designs that involved folding a flat surface into a 3D shape using motors, and suggested that these could be adapted to capturing sea creatures.

Teoh got to work and designed five identical 3D-printed polymer petals, which are attached to a series of rotating joints that form a scaffold when linked together. A single motor is used to apply torque to the point where the five petals meet, causing the entire structure to fold up into a hollow dodecahedron — a twelve-sided, almost-round box.

The folding is entirely directed by the origami-inspired design of the joints and the shape of the petals, requiring no additional energy input.

First author Zhi Ern Teoh tests the RAD sampler, mounted on the ROV Ventana. Credit: Wyss Institute at Harvard University.
First author Zhi Ern Teoh tests the RAD sampler, mounted on the ROV Ventana. Credit: Wyss Institute at Harvard University.

In order to test their device, called the Rotary Actuated Dodecahedron (RAD), the researchers traveled to Mystic Aquarium in Mystic, CT. There, the team proved that RAD was able to collect and release moon jellyfish underwater. The next step was testing RAD in-field; the device was mounted on an underwater remotely-operated vehicle (ROV), which dived to depths of 500-700 m (1,600-2,300 ft.). Using a joystick, a human controlled ROV’s manipulator arm to operate the sampler and capture squid and jellyfish in their natural habitats. During both capture and release, no creature was harmed.

“The RAD sampler design is perfect for the difficult environment of the deep ocean because its controls are very simple, so there are fewer elements that can break. It’s also modular, so if something does break, we can simply replace that part and send the sampler back down into the water,” said Teoh in a statement. “This folding design is also well-suited to be used in space, which is similar to the deep ocean in that it’s a low-gravity, inhospitable environment that makes operating any device challenging.”

Teoh and colleagues now plan to design a more rugged version that is more suited to heavy-duty applications, such as marine geology.

The researchers, however, envision a far wilder version of RAD, one equipped with all sorts of sensors, but also a DNA sequencer, such that data can be collected about the size, properties, and genome of a captured soft-bodied animal — before the animal is safely released. It’s “almost like an underwater alien abduction,” commented Gruber.

The findings were reported in the journal Science Robotics. 

Was this helpful?


Thanks for your feedback!

Related posts:
  1. These cute “big-mouthed” underwater creatures digest their own organs
  2. New “soft robots” are strong enough to lift heavy weights, delicate enough to pluck a raspberry
  3. Deep-sea mining could push many delicate species to extinction
  4. A.I. masters control of delicate Nobel-winning physics experiment in under an hour
  5. Newly discovered tyrannosaur species had a delicate face
Tags: jellyfishmarine researchorigamirobotsquid

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW