ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists are teaching robots to say ‘No’ to commands. Is that a good thing?

Researchers at Tufts alter the laws of robotics to teach robots to say "no".

Tibi PuiubyTibi Puiu
November 27, 2015 - Updated on November 16, 2020
in News, Robotics, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

laws robotics

In the 1940s when real robots, let alone artificial intelligence, weren’t around, famed SciFi author Isaac Asimov set forth a set of laws known as the “Three Laws of Robotics”. These state:

  1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
  2. A robot must obey the orders given it by human beings, except where such orders would conflict with the First Law.
  3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

Above all else, it seems, a robot must obey a human at all times, except when such an order might harm a human. Researchers at Tufts University Human-Robot Interaction Lab, however, use their own set of rules – one where robots can reject a command. That sounds like the plot for a bad movie about human annihilation at the hand of artificial overlords.

If you think about it for a moment, though, it makes sense. Humans aren’t exactly perfectly rational, so we sometimes make, in lack of a better word, stupid decisions. Passing on these decisions to robots could potentially have drastic consequences. What Tufts researchers are suggesting is applying in a similar fashion the reasoning humans use to assess a command to robots. According to IEEE, linguistics theory says humans assess a request by following so-called Felicity conditions. These are:

  1. Knowledge: Do I know how to do X?
  2. Capacity: Am I physically able to do X now? Am I normally physically able to do X?
  3. Goal priority and timing: Am I able to do X right now?
  4. Social role and obligation: Am I obligated based on my social role to do X?
  5. Normative permissibility: Does it violate any normative principle to do X?

The first three are self-explanatory. The forth condition basically says “can I trust you? who are you to tell me what to do?”. The fifth rule says “OK, but if I do that do I break any rules? (civil and criminal laws for humans, and the possibly an altered version of Asimov’s Laws of Robotics for robots). In the videos below, Tufts researchers demonstrate their work .

First, a robot set on a table is ordered to walk over it.The robot registers however that by doing so it would fall off and possibly damage itself, so it rejects the order. The researcher, however, changes the framework by telling the robot “I will catch you”, then the robots amazingly complies. It’s worth noting that the robot didn’t have these exact conditions preprogrammed. Natural language processing lends the robot a sort of understanding of what the human means in a general way “You will not violate Rule X because the circumstances that would cause damage are rendered void”.

RelatedPosts

Japan’s Restaurants Are Hiring Cat Robots — And They’re Pretty Good Servers
Robot Bartender Serves Hundreds of Drinks at Berlin Party
The farmers of the future will be all robots
Drones can elicit emotions from people, which could help integrate them into society more easily

Next, the robot is instructed to “move forward” through an obstacle, which the robot graciously disobeys because it violates a set of rules that say “obstacle? don’t budge any more”. So, the researcher asks the robot to disable its obstacle detection system. In this case, the Felicity condition #4 isn’t met because the human didn’t have the required privileges.

In the final video, the same situation is presented only now the human that makes the command has the required trust necessary to fulfill the command.

At Tufts, the researchers are also working on a project called Moral competence in Computational Architectures for Robots, which seeks to “identify the logical, cognitive, and social underpinnings of human moral competence, model those principles of competence in human-robot interactions, and demonstrate novel computational means by which robots can reason and act ethically in the face of complex, practical challenges.”

“Throughout history, technology has opened up exciting opportunities and daunting challenges for attempts to meet human needs. In recent history, needs that arise in households, hospitals, and on highways are met in part by technological advances in automation, digitization, and networking, but they also pose serious challenges to human values of autonomy, privacy, and equality. Robotics is one of the liveliest fields where growing sophistication could meet societal needs, such as when robotic devices provide social companionship or perform highly delicate surgery. As computational resources and engineering grow in complexity, subtlety, and range, it is important to anticipate, investigate, and as much as possible demonstrate how robots can best act in accordance with ethical norms in the face of complex, demanding situations.”

“The intricacy of ethics, whether within the human mind or in society at large, appears to some commentators to render the idea of robots as moral agents inconceivable, or at least inadvisable to pursue. Questions about what actions robots would have the leeway, direction, or authority to carry out have elicited both fears and fantasies. “

Could in the future robots become the ultimate ethical agents? Imagine all the virtues, morals and sound ethics amassed through countless ages downloaded inside a computer. An android Buddha. That would be interesting, but in the meantime Tufts researchers are right: there are situations when robots should disobey a command, simply because it might be stupid. At the same time, this sets a dangerous precedent. Earlier today, I wrote about a law passed by Congress that regulates mined resources from space. Maybe it’s time we see an international legal framework that compels developers not to implement certain rules in their robots’ programming, or conversely implement certain requirements. That would definitely be something I think everybody agrees is warranted and important – if it only didn’t interfere with the military.

Tags: robotrobotics

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

In the UK, robotic surgery will become the default for small surgeries

byMihai Andrei
3 weeks ago
Future

Teen Influencer Watches Her Bionic Hand Crawl Across a Table on Its Own

byTudor Tarita
2 months ago
Future

China’s Humanoid Robots Stumble, Break Down, and Finish the World’s First Robot Half Marathon

byTibi Puiu
2 months ago
Future

These Robot Dogs Kept Going Viral on Social Media — Turns Out, They Have a Spying Backdoor

byMihai Andrei
3 months ago

Recent news

China Resurrected an Abandoned Soviet ‘Sea Monster’ That’s Part Airplane, Part Hovercraft

June 30, 2025
great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.