Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Environment → Animals

MIT research might help UAVs fly with the agility of hawks

Tibi Puiu by Tibi Puiu
January 20, 2012
in Animals, Research, Robotics, Technology

Current unmanned aerial vehicles (UAV), commonly referred to as drones, are packed with state of the art technology, but despite this they’re not very smart as far as maneuvering around obstacles is concerned. Birds, for instance, can fly through forests at incredible speeds, traveling through out the whole woods  at times, with no risk of collision what so ever. MIT scientists are now determined to apply the principles which allow birds to evade obstacles at high speeds to the drones of the future. Be afraid!

northern goshawk When navigating around obstacles, UAVs have to fly at rather low-speeds, since they have to be able to stop within their sensors’ view.

“If I can only see up to five meters, I can only go up to a speed that allows me to stop within five meters, which is not very fast,” says Emilio Frazzoli, an associate professor of aeronautics and astronautics at MIT.

The northern goshawk is a fierce predator that swirls through threes at lightning speed to catch its pray, mostly small mammals. To reach these great speeds, while dodging stones, trees and branches at the same time, the hawk has a sense of maximum theoretical speed it can reach, and stays within these limits, the researchers say. It does this by scanning the density of obstacles, like the number of trees divided across a surface in the forest, and thus it can know for sure that if it goes through an opening through the trees over which it currently has no field of vision, it will be safe to fly nevertheless since it will find another one. The researchers found that there exists a speed below which a bird — and any other flying object — has a fair chance of flying collision-free. If this limit is crossed, the bird or aircraft is sure to collide with an obstacle.

The same principles applies to downhill skiers as well.

“When you go skiing off the path, you don’t ski in a way that you can always stop before the first tree you see,” he says. “You ski and you see an opening, and then you trust that once you go there, you’ll be able to see another opening and keep going.”

Frazzoli and PhD student Sertac Karaman managed to mathematically describe both the bird’s and skier’s intuition after they developed models of various forest densities, calculating the maximum speed possible in each obstacle-filled environment. They then adjusted the model to represent varying densities of trees, and calculated the probability that a bird would collide with a tree while flying at a certain speed.

The scientists’ research is still in this theoretical phase, and the researchers are now working with Harvard to study hawks in the forest environments and see if the theoretical model is precise enough. Next, Frazzoli wants to see how close humans can come to such theoretical speed limits, and is developing a first-person flying game.

“What we want to do is have people play, and we’ll just collect statistics,” Frazzoli says. “And the question is, how close to the theoretical limit can we get?”

source / image credit

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Woodland hawks flock to cities, research reveals. Other wildlife is doing the same
  2. New agility test could show how good young football players are
  3. Memories are stored in specific brain cells, MIT Inception-like research finds
  4. Painting wind turbines black can help birds not fly into them
  5. Climate change will recolor much of the oceans by 2100, MIT research suggests
Tags: mitUAV

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW