ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Robotics

Robot swarms hint towards the future

Tibi PuiubyTibi Puiu
April 3, 2013
in Robotics, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

robot-swarm

When you think of robots, the first thing you might think of are anthropological-looking tin cans that beep around and perform various tasks (you have SciFi shows to thank for that) or familiar modern day industrial robots that toil away day and night producing goods. As such, a puck-sized robot that doesn’t look like much might not seem very impressing at first glance. Coupled with a swarm of its brethren, however, things suddenly become more interesting.

Robot swarms have been interesting scientists for a while now because of their highly appealing prospects. Imagine thousands of tiny nano-sized bots that enter your bloodstream and make their way to key body parts to perform medical procedures. Like an army of ants, swarms of robots could communicate with one another, join forces and act as one to move objects and perform various tasks “single-minded” bots can not. What I personally find really interesting, is the coupling advantages of robot swarms. For instance, I while ago I wrote about some ping-pong ball sized and transformers-like robots that join together to share computing power, memory and limbs to form a new, re-configurable entity capable of performing an array of tasks – something that would become very useful in a highly dynamic, but low-resource environment like applications at the International Space Station.

Researchers at Sheffield University are doing their bit at bringing robotic swarms a step closer to becoming practical, after they developed hockey puck-like robots that can self-organise and work together to transport large objects.

“There’s no central entity that controls everything … all the little parts interact with each other, and complexity arises from these interactions,”  said Roderich Gross, head of the Natural Robotics Lab at the University of Sheffield.

When taken alone, each robot doesn’t seem like much: a tiny CPU housed in a cage-like housing that resembles a hockey puck, two wheels to allow it to move around, a camera, a microphone, a speaker,  an accelerometer and proximity sensors to detect nearby objects. When more of these objects, however, say 40 like in the case of the present research, meet and join together, they interact in ways that allows them to perform tasks impossible to attain all by themselves.

The purpose of the Sheffield University scientists’ research isn’t to demonstrate swarm robotics capabilities, however. What they’re looking for is discovering the minimum amount of information that an individual robot in a swarm requires.

“The key is to work out what is the minimum amount of information needed by the robot to accomplish its task,” said Gross. “That’s important because it means the robot may not need any memory, and possibly not even a processing unit, so this technology could work for nanoscale robots, for example in medical applications.”

As such the robots had their functions limited – which is something rather counter-intuitive since you’d expect one to use all the available resources to perform a task as effectively as possible –  in order to better mirror a microscopic environment (here, robot swarms are eventually thought to become most useful) where design limitations are very strict. So, rather than communicating with one hive mind, each robot coordinates itself and alters its behavior according to the closest robot.

RelatedPosts

Scientists observe nanobots coordinating inside a living host for the first time
Robot see, robot do: MIT software allows you to instruct a robot without having to code
Half of Twitter accounts discussing ‘reopening America’ are bots
New four-legged robots designed to work together to accomplish difficult tasks

With minimal amounts of information, the puck-like robots successfully arranged themselves into clusters or sorted themselves accordingly to various filters like based on color or using a light to represent the pull of gravity. What’s most remarkable, maybe, is that despite lacking a central nervous hub “e-puck” robots were able to cooperatively push large objects from one place to another with an 100 percent success rate. The route that they took was on average only 8.4 percent further than the shortest possible path, according to research to be published in the Proceedings of the IEEE International Conference on Robotics and Automation in May.

Be sure to check the embedded video below featuring Dr. Gross demoing his e-puck bots.

Tags: robot swarmrobots

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

China released an open source kung-fu robot and we’re not really sure why

byMihai Andrei
3 months ago
Future

Meet the smallest and fastest robot-insects ever developed

byMihai Andrei
1 year ago
A colorful image of anthrobot with cilia on its outer surface.
Biology

Scientists create healing microbots made of human skin cells

byRupendra Brahambhatt
2 years ago
A robot attached to wires.
Anthropology

Researchers tried out AI preachers — and it didn’t go so well

byRupendra Brahambhatt
2 years ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.