Quantcast
ZME Science
  • CoronavirusNEW
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Environment Animals

Bio-mechanical hybrid robot might detect diseases from inside your body

Tibi Puiu by Tibi Puiu
October 27, 2017
in Animals, Health & Medicine, Technology

Scientists at Newcastle University are currently developing a tiny bio-inspired robot, just one centimeter in length, which in less than five years might be used to diagnose and pinpoint diseases from inside the human body.

The sea lamprey, a very simple organism which dwells in the Atlantic waters, which scientists will use as inspiration for a bio-mechanical device capable of traveling through your body. Not that much of looker, but he's on our side. (c)  U.S. Fish and Wildlife Service.
The sea lamprey, a very simple organism which dwells in the Atlantic waters, which scientists will use as inspiration for a bio-mechanical device capable of traveling through your body. Not that much of looker, but he's on our side. (c) U.S. Fish and Wildlife Service.

The researchers, backed-up by the American National Science Foundation and the UK’s Engineering and Physical Sciences Research Council,  are hoping to succeed where other scientists at nano labs across the world have been painstakingly trying to achieve as well – a working, safe tiny device which can swim through the blood stream and collect critical information, irretrievable otherwise.

Called the “Cyberplasm”, the Newcastle scientists’ take involvesa  biomimicking robot that functions like a living creature loaded with sensors derived from animal cells, inspired by the  sea lamprey, a creature found mainly in the Atlantic Ocean. The animal has an extremely nervous system, making it perfect for bio-mechanical mimicking.

“Nothing matches a living creature’s natural ability to see and smell its environment and therefore to collect data on what’s going on around it,” Dr Frankel noted.

Cyberplasm will have an electronic nervous system, ‘eye’ and ‘nose’ sensors derived from mammalian cells, and artificial muscles that use glucose as an energy source. Its sensors are being developed to respond to external stimuli, like chemical signals or light, much in the same way organisms do in nature by converting them into electronic impulses that are sent to an electronic ‘brain’ equipped with sophisticated microchips. This information will be then used by the brain to send electronic messages to artificial muscles, telling them to contract or relax, resulting in an undulating motion which propels the Cyberplasm and allows it to navigate through the human body. Data on the chemical make-up of the robot’s surroundings can be collected and stored for later recovery, information later used for diagnosis.

Besides disease diagnosis, the researchers believe the Cyberplasm might have some immediate applications in the prosthetics sector, where the tiny bio-robot might be used to stimulate  living muscle tissue to contract and relax.  The researchers are currently developing the components of Cyberplasm individually, and while the initial prototype will be one centimeter long, they’re confident they can scale it down to nano-size in time – a working device should be ready within five years.

Get more science news like this...

Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

“We’re currently developing and testing Cyberplasm’s individual components,” Frankel concluded. “We hope to get to the assembly stage within a couple of years. We believe Cyberplasm could start being used in real world situations within five years”.

University of Newcastle  / Eureka Alert

Tags: biomedicinehybridmedical technology
Tibi Puiu

Tibi Puiu

Follow ZME on social media

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
  • Coronavirus
  • News
  • Environment
  • Health
  • Future
  • Space
  • Feature
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Coronavirus
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.