ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Antimatter captured at CERN

Mihai AndreibyMihai Andrei
November 18, 2010 - Updated on April 28, 2023
in Physics, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Special K for depression
New measurement of a proton leaves us with more questions than answers
New imaging method reveals stunning methods of brain connections
NASA Mars Rover gets smarter as it ages

For physicists, antimatter is probably the most valuable substance ever; the slightest bit of it could provide extremely valuable information that can help clear out some of the most stressing issues in modern physics. However, the thing is these little gifts are pretty hard to wrap. However, the ALPHA project at CERN achieved this remarkable feat and took a huge leap towards understanding one of the questions about the Universe: what’s the actual difference between matter and antimatter.

The team had 38 successful attempts to capture single antihydrogen atoms in a magnetic field for about 170 miliseconds.

“We’re ecstatic. This is five years of hard work,” says Jeffrey Hangst, spokesman for the ALPHA collaboration at CERN.

And they should be ! Since it restarted working, the Large Hadron Collider at CERN had quite a few good moments, but this is the best one so far. Antimatter (or the lakc of it) still poses one of the biggest mysteries ever; according to the theories up to date, at the Big Bang, matter and antimatter were produced in equal amounts, but somehow all the antimatter dissappeared, so now researchers are forced to turn to more and more advanced and delicate methods in order to find it and study it.

Artist depiction of hydrogen and anithydrogen

As you can guess by its name, antimatter is just like matter, only in reverse. So the antiprotons are just like normal protons, but they are negatively charged, while electrons have a positive charge. The main objective of this stage of the ALPHA project was to compare the relative energy of hydrogen and antihydrogen in order to confirm that antimatter and matter have the same electromagnetic properties, which is a key feature of the standard model.

This is not the first time antimatter was captured, the first time it was in 2002, with the ATHENA project; however, it lasted just several miliseconds, which made it impossible to analyze. What happens is that when you combine matter with antimatter, they vanish with a big boom, releasing high energy photons (gamma rays). In the ATHENA project, antihydrogen combined with hydrogen from the walls of the contained and annihilated each other.

To prevent this from happening, the ALPHA team used a totally different technique, which was way more difficult: capturing the antimatter in a magnetic trap. To capture the 38 atoms, they had to repeat the experiment no less than 335 times.

“This was ten thousand times more difficult” than creating untrapped antihydrogen atoms, says Hangst — ATHENA made an estimated 50,000 of them in one go in 2002. To do spectroscopic measurements, Surko estimates that up to 100 antihydrogen atoms may need to be trapped at once.

“The goal is to study antihydrogen and you can’t do it without trapping it,” says Cliff Surko, an antimatter researcher at the University of California, San Diego. “This is really a big deal.”

Of course, achieving these atoms was very costly, but the effort was definitely worth it. However, physicists are looking into other methods that could prove to be more effective in times to come.

“Rather than trying to demonstrate that we can confine 38 antihydrogen atoms for a small fraction of a second, we are working on new methods to produce and trap much larger numbers of colder atoms,” says Gerald Gabrielse, ATRAP’s spokesman. “We shall see which approach is more fruitful.”

via CERN

Tags: antihydrogenantimattercernelectronlarge hadron colliderLHCmatterPhysicsprotonResearchstudy

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Home science

This is absolutely the best way to crack an egg, according to science

byTudor Tarita
4 days ago
News

CERN Creates Gold from Lead and There’s No Magic, Just Physics

byMihai Andrei
1 week ago
Mathematics

Mathematicians Just Solved a 125-Year-Old Problem That Unites Three Major Theories of Physics

byTibi Puiu
2 weeks ago
News

Packed Festival Crowds Actually Form Living Vortices — And You Can Predict Them with Physics

byTibi Puiu
4 weeks ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.