Pressure in protons’ cores is over ten times greater that that in neutron stars

More pressure than you during finals.

The proton and antiproton are incredibly similar — indicating that perhaps, our universe shouldn’t exist

Why does the universe still exist? That’s an intriguing question if I’ve ever heard one.

New measurement of a proton leaves us with more questions than answers

We just can’t seem to determine exactly how tiny they are.

Matter and antimatter have the same properties, experiment suggests

All models of particle physics are based on the mundane assumption that matter and anti-matter are indistinguishable, but we can’t be sure. Luckily, an experiment at Brookhaven National Lab seems to confirm this basic caveat of particle physics after it found the attractive forces between antiprotons are the same as those seen in regular matter.

Perfection is overrated: Flawed graphene sheets may lead to better fuel cells

A rather surprising study found that graphene’s imperfections can actually be used to improve fuel cell efficiency. Researchers from Northwestern University worked together with scientists of five other institutes to show that defective graphene actually works as the world’s thinnest proton channel—only one atom thick.

Record breaking energies achieved in a compact particle accelerator 3 million times smaller than the LHC

With the help of the most powerful laser in the world, scientists have achieved the highest energies yet in a compact particle accelerator. The tabletop-sized device accelerates electrons to high speeds by firing high power laser pulses in a controlled manner through a plasma tube only 9 centimeters in size. The accelerator ring at the Large Hadron Collider in CERN is

New exotic particle behaviour found at CERN

The Large Hadron Collider at CERN has started doing some serious business. This time, an extremely rare particle containing equal parts of matter and antimatter popped up during experiments at the world’s largest and hottest particle accelerator.   The particle, named a B meson is made out of one quark (the building blocks of protons and neutrons) and one antiquark

Antimatter captured at CERN

For physicists, antimatter is probably the most valuable substance ever; the slightest bit of it could provide extremely valuable information that can help clear out some of the most stressing issues in modern physics. However, the thing is these little gifts are pretty hard to wrap. However, the ALPHA project at CERN achieved this remarkable feat and took a huge

LHC produces first results

Since the Large Hadron Collider went back in business, all sort of rumors have been circling the scientific circles (and not only). However, until these rumors are proven wrong or right, the first official paper on proton collisions from the Large Hadron Collider has been published in this week’s edition of Springer’s European Physical Journal C. . Designed to reach