ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Decade-old debate put to rest with new measurement of proton diameter

They're not big.

Alexandru MicubyAlexandru Micu
September 6, 2019
in Physics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

We now have an accurate measurement of how large protons are.

Image via Pixabay.

Back in 2010, a team of physicists set their field (figuratively) on fire. They measured the radius of a proton and found it to be 4% smaller than expected. Physicists are very passionate about this kind of stuff and it sparked a huge debate. Now, researchers from York University have put the debate to rest by taking a precise measurement of the size of the proton.

How big is something very small?

“The level of precision required to determine the proton size made this the most difficult measurement our laboratory has ever attempted,” said Distinguished Research Professor Eric Hessels, Department of Physics & Astronomy, who led the study.

The exact size of the proton is an important unsolved problem in fundamental physics today, one which the present study addresses. The team reports that protons measure 0.833 femtometers in diameter (a femtometer is one-trillionth of a millimeter). This measurement is roughly 5% percent smaller than the previously-accepted radius value.

“After eight years of working on this experiment, we are pleased to record such a high-precision measurement that helps to solve the elusive proton-radius puzzle,” said Hessels.

The exact measurement of the proton’s radius would have significant consequences for the understanding of the laws of physics, such as the theory of quantum electrodynamics, which describes how light and matter interact. Hessels says that the study didn’t exist in a vacuum — three previous studies were pivotal in attempting to resolve the discrepancy between electron-based and muon-based determinations of the proton size.

The 2010 study was the first to use muonic hydrogen to determine the proton size (whereas previous experiments used regular hydrogen). Hydrogen atoms are made up of one proton and one electron In the 2010 experiment, the team replaced the electron with a muon, a related (but heavier) particle.

While a 2017 study using simple hydrogen agreed with the 2010 muon-based result, a 2018 experiment, also using hydrogen, supported the pre-2010 value. Hessels and his team spent the last eight years trying to get to the bottom of the issue and understand why researchers were getting different results when measuring with muons rather than electrons.

The team carried out a high-precision measurement using a technique they developed for this purpose, the frequency-offset separated oscillatory fields technique (FOSOF). In essence, they used a fast beam of hydrogen atoms created by shooting protons through hydrogen molecules. Their result agrees with the value found in the 2010 study.

RelatedPosts

Nobel Physics Prize goes to cosmology and exoplanet pioneers
Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From
What is the Electron Cloud Model: this is how electrons inside an atom really behave
Solar fuels just years away, propelled by breakthrough in catalyst research

The paper “A measurement of the atomic hydrogen Lamb shift and the proton charge radius” has been published in the journal Science.

Tags: hydrogenparticlePhysicsproton

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Home science

This is absolutely the best way to crack an egg, according to science

byTudor Tarita
3 days ago
Mathematics

Mathematicians Just Solved a 125-Year-Old Problem That Unites Three Major Theories of Physics

byTibi Puiu
2 weeks ago
News

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

byTibi Puiu
3 weeks ago
News

Packed Festival Crowds Actually Form Living Vortices — And You Can Predict Them with Physics

byTibi Puiu
4 weeks ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.