ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment

Crops employ “austerity measures” to conserve water in drought conditions

By limiting the growth of their roots, grassy crops conserve soil water during drought.

Alexandru MicubyAlexandru Micu
July 12, 2016
in Agriculture, Climate, Environment, News, Research, Science, Studies, World Problems
A A
Share on FacebookShare on TwitterSubmit to Reddit

A new study of plant roots found that grasses employ a type of “economic austerity” when confronted with drought conditions: the plants limit their root systems’ growth to preserve water in the soil. The discovery could potentially be used to improve crop yields.

Image credits Chris Devaraj

The world’s population has been growing rapidly over the past few decades, and this trend is not going to stop any time soon (see this and this.) The last thing you would want in this scenario is a shortage of food — which is exactly what scientist expect will happen. Seeing this, researchers from Carnegie Mellon University published a paper aiming to understand how agriculturally valuable plants react to drought.

Plants draw most of their water from soil, through their roots. However, not all plants have the same kinds of roots — the study examined grasses, a family which include key species of plants including maize, sorghum and sugarcane. Grasses rely on crown roots to extract water, a type of root unique to this family, which grow down from the regions of the shoot at soil surface (an area known as the crown, hence the name.) The root system starts to form after sprouting and continues to develop throughout the plant’s life.

Maize seedling with crown roots beginning to grow from the base of the shoot (red arrow).
Image credits Jose Sebastian

“Crown roots are like the lanes of a highway connecting the suburbs to the city. As the plant grows, new lanes are added to this highway to increase the flux of water and nutrients from the soil to the shoot,” explains Jose Sebastian, post-doctoral fellow at the Carnegie Institution for Science, and lead author of the study.

The effect of drought on crown root development was poorly documented up to now, so researchers had no way of estimating how the plants would react to a hotter and drier climate. The team, led by José Dinneny, was able to prove that water shortages causes the grasses to suppress crown root growth.

Their results show that the crown is crucial for sensing water availability in the topsoil. If water is scarce, the development of crown roots is suppressed and the grass plant maintains a more limited root system, the team found.

“We normally think about roots as providing access to water, thus it was initially unclear why a plant would shut down root growth under drought,” Dinneny explained.

“We discovered, however, that this response allows the plant to slow the extraction of water from soil and bank these reserves for the future; sort of like the plant version of economic austerity.”

These “austerity measures” are only employed when water is scarce. If moisture is reintroduced into the soil, crown root growth is quickly resumed, so the plant can take advantage of all available water. The team also determined that this suppression is much less pronounced in domesticated grasses such as maize and millet than in wild varieties.

“This suggests to us that plant breeding has unintentionally affected these crop plants’ abilities to cope with drought,” Dinneny said.

Artificial selection or agricultural plants such as maize or other grassy crops aimed at tailoring crown roots’ response to drought could improve these plants’ productivity and preserve ground-water resources.

RelatedPosts

How to create deliciousness — the chemistry behind cooking
Climate Change Threatens Drinking Water
Climate warming is changing the US planting zones
New method spots counterfeit food and medicine for cheap, by filming how it freezes

The full paper, titled “Grasses suppress shoot-borne roots to conserve water during drought” has been published online in the journal PNAS.

Tags: agricultureClimatecrownfoodgrassesmaizeroots

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

Scientists Gave People a Fatty Milkshake. It Turned Out To Be a “Brain Bomb”

byChris Marley
1 week ago
Biology

These fig trees absorb CO2 from the air and convert it into stone

byMihai Andrei
1 month ago
Future

This Ancient Grain Could Power the Future of 3D-Printed Food

byMihai Andrei
1 month ago
Health

This anti-aging drug extends life as effectively as restricting calories

byZahida Sultanova
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.