Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Environment

Crops employ “austerity measures” to conserve water in drought conditions

By limiting the growth of their roots, grassy crops conserve soil water during drought.

Alexandru Micu by Alexandru Micu
July 12, 2016
in Agriculture, Climate, Environment, News, Research, Science, Studies, World Problems

A new study of plant roots found that grasses employ a type of “economic austerity” when confronted with drought conditions: the plants limit their root systems’ growth to preserve water in the soil. The discovery could potentially be used to improve crop yields.

Image credits Chris Devaraj

The world’s population has been growing rapidly over the past few decades, and this trend is not going to stop any time soon (see this and this.) The last thing you would want in this scenario is a shortage of food — which is exactly what scientist expect will happen. Seeing this, researchers from Carnegie Mellon University published a paper aiming to understand how agriculturally valuable plants react to drought.

Plants draw most of their water from soil, through their roots. However, not all plants have the same kinds of roots — the study examined grasses, a family which include key species of plants including maize, sorghum and sugarcane. Grasses rely on crown roots to extract water, a type of root unique to this family, which grow down from the regions of the shoot at soil surface (an area known as the crown, hence the name.) The root system starts to form after sprouting and continues to develop throughout the plant’s life.

Maize seedling with crown roots beginning to grow from the base of the shoot (red arrow).
Image credits Jose Sebastian

“Crown roots are like the lanes of a highway connecting the suburbs to the city. As the plant grows, new lanes are added to this highway to increase the flux of water and nutrients from the soil to the shoot,” explains Jose Sebastian, post-doctoral fellow at the Carnegie Institution for Science, and lead author of the study.

The effect of drought on crown root development was poorly documented up to now, so researchers had no way of estimating how the plants would react to a hotter and drier climate. The team, led by José Dinneny, was able to prove that water shortages causes the grasses to suppress crown root growth.

Their results show that the crown is crucial for sensing water availability in the topsoil. If water is scarce, the development of crown roots is suppressed and the grass plant maintains a more limited root system, the team found.

“We normally think about roots as providing access to water, thus it was initially unclear why a plant would shut down root growth under drought,” Dinneny explained.

“We discovered, however, that this response allows the plant to slow the extraction of water from soil and bank these reserves for the future; sort of like the plant version of economic austerity.”

These “austerity measures” are only employed when water is scarce. If moisture is reintroduced into the soil, crown root growth is quickly resumed, so the plant can take advantage of all available water. The team also determined that this suppression is much less pronounced in domesticated grasses such as maize and millet than in wild varieties.

“This suggests to us that plant breeding has unintentionally affected these crop plants’ abilities to cope with drought,” Dinneny said.

Artificial selection or agricultural plants such as maize or other grassy crops aimed at tailoring crown roots’ response to drought could improve these plants’ productivity and preserve ground-water resources.

The full paper, titled “Grasses suppress shoot-borne roots to conserve water during drought” has been published online in the journal PNAS.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Mandatory water conservation measures loom over South California as the state enters its third year of drought
  2. How Buildings of the Future Will Conserve Water
  3. Plant roots may hold the key to the next generation drought-resistant crops
  4. LED hourglass lamp powered by falling sand reminds you to conserve energy
  5. Creative brains employ unique patterns of connectivity, favoring long-distance connections
Tags: agricultureClimatecrownfoodgrassesmaizeroots

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW