Whale skulls act like resonance chambers to help them hear underwater

First whole-body CT scan of a minke whale yields insights on whale communication

Geologists listen to volcanic murmur to predict eruptions

Listen closely, and the volcano will share its secrets.

Ultra slim sound diffuser could greatly improve your cinema and theater experience

It does the same job, while being 10 times thinner and much cheaper.

Paper-thin device turns touch into electricity, flags into loudspeakers, bracelets into microphones

Woah.

A guide to what sound is and why it can topple buildings

How it forms, how we hear it, and what it can do.

Powerful sound blasters can render tsunamis dead in the water, new study shows

Fus-ro-dah!

Brain network that picks words from the background noise revealed

Our brains are really good at sifting through information.

Study looks at what makes some song stick in your head, while others don’t

Don’t read this if you’re not in the mood to sing to yourself. Seriously.

Scientists develop a ridiculously cheap acoustic tractor beam

It can manipulate objects in complex patterns for only 10 bucks.

Why sonar needs to adapt to new sound highways in the Arctic

Climate change is creating super corridors for sound waves beneath the Arctic.

New silicon chip technology amplifies light using sound waves

A whole new world of signal processing may be just around the corner.

Why does your voice sound so different when recorded

Why you can never hear your own, real voice without assistance (recording yourself) has to do with how sound reaches your inner ear. Basically, your inner ear picks up acoustic vibrations like the chirping of birds, rattle of the city or people’s voices and translates these vibrations into electrical signals that the brain can process as “sound”. The inner ear, however, also picks up vibrations conducted by the bones in your neck and head. This combination of internal and external vibrations produces an uniquely characteristic voice which you won’t ever be able to hear elsewhere!

Almost total silence: acoustic absorber cancels 99.7% of sound

We all need a bit of quiet in our lives sometimes, but have you ever took a minute to ponder what ‘total silence’ might feel like? It’s scary. Every bodily function, otherwise unnoticed, now sounds like a freight train. Feels like it, anyway. You can even hear your heart beats. Though not exactly ‘perfect silence’, a team of researchers at Hong Kong University of Science and Technology have come mighty close. They report 99.7% absorption of low frequency pressure waves (sound) using subwavelength structures or materials.

Scientists find the sound of stars

A chance discovery has provided experimental evidence that stars may generate sound. While he was examining the interaction of an ultra-intense laser with a plasma target, John Parsley from the University of York found that interfering plasma generates a series of pressure pulses – in other words, sounds.

Making walls talk – new technique extracts audio from video

A very simple, yet effective optical technique was demonstrated that can transform video inputs, such as the motion of a piece of paper, into audio. To achieve this, the researchers involved exploited a simple principle that describes how sound waves causes objects in their path to vibrate. If you reverse engineer the vibrations, you can effectively decode the sound source

Thin metasurface absorbs sound near perfectly, while producing electricity at the same time

Researchers at the Hong Kong University of Science and Technology have created a thin metamaterial surface that is capable of absorbing nearly all of the acoustic energy (sound).  Unlike conventional sound absorbing material that is sometimes only effective when meters thick, the metasurface is deeply “subwavelength” and therefore much thinner. There’s a catch though: the system has been demonstrated for near perfect sound absorption

How loud music damages your hearing

Listening to loud music has been shown time and time again to affect hearing in a negative way. The damage becomes more pronounced with age, leading to difficulties in understanding speech. A new analytic study by researchers at University of Leicester  examined the cellular mechanisms that underlie hearing loss and tinnitus triggered by exposure to loud sound. Music to your ears

Why people love it when the bass drops

Rave parties go crazy when the bass drops, no doubt about it, but what makes people click so well with low frequencies? Canadian scientists at the McMaster Institute for Music and the Mind investigated how our brains react to low-freq pitches and found our affinity has to do with how humans detect rhythm. Basically, the bass is easier to follow, so more

How sound frequencies affect taste – will music replace sugar in your coffee?

Listening to a high pitched tune will enhance the sweetness of food, while a low hum will make your taste buds signal bitter. Obviously, listening to all low frequencies won’t turn your chocolate bar into a pickled vegetable, but research in this respect suggests there’s genuine synesthetic behaviour. Some restaurant owners are already exploiting this knowledge and play ambient music

3D acoustic cloaking device makes objects undetectable with sound

Using relatively simple perforated sheets of plastic and an extensive amount computation, Duke University researchers have created the world’s first sound invisibility cloak. The cloak diverts sound waves in a way that it conceals both itself, and anything hidden beneath it. The device is, of course, 3D, and it works in the same way, no matter what direction the sound