ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Magnets anchored on Mars’ orbit would make the planet a second Earth, NASA says

Shields up!

Alexandru MicubyAlexandru Micu
March 6, 2017 - Updated on May 19, 2017
in Environment, News, Science, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Mars could be returned to its habitable glory days easier than you’d believe, NASA researchers say. All it would take is a man-made magnetic field to allow the red planet’s atmosphere to thicken and foster more Earth-like conditions.

Mars with an atmosphere and water wouldn’t be a half-bad place to settle.
Image credits Ittiz / Wikipedia.

Mars is a pretty desolate place. Blood red and bone dry at the same time, it’s either way too cold or much too hot depending on where you happen to be on its surface. There’s nothing good to breathe and it’s also pretty radioactive. In short, Mars isn’t much to write home about — unless you’re writing to complain about how unwelcoming it is.

But it wasn’t always like this, and it doesn’t have to stay this way. Scientists believe that Mars was once surprisingly Earth-like, with water-filled oceans and a surprisingly comfortable climate for an alien world. As the planet’s magnetic field weakened and finally collapsed billions of years ago, solar winds stripped it bare of its atmosphere leaving behind a cold and barren piece of rock.

That magnetic field is the key to NASA’s bold plan to making Mars an awesome place for future generations of human colonists.

Is it a bird? Is it a plane? It’s a magnet!

NASA simulations show that a powerful-enough magnetic shield propped up into space between the Sun and Mars could push away solar winds and allow the red planet to naturally regrow its atmosphere.

The results were presented at the Planetary Science Vision 2050 Workshop last week, when Planetary Science Division director Jim Green said anchoring an “artificial magnetosphere” into space between Mars and the Sun should shield the planet in the magneto-tail (a teardrop-like shape or magnetic ‘wake’) that trails behind this protective field.

“This situation then eliminates many of the solar wind erosion processes that occur with the planet’s ionosphere and upper atmosphere allowing the Martian atmosphere to grow in pressure and temperature over time,” the researchers explain in an accompanying paper.

“Much like Earth, an enhanced atmosphere would: allow larger landed mass of equipment to the surface, shield against most cosmic and solar particle radiation, extend the ability for oxygen extraction, and provide ‘open air’ green-houses to exist for plant production, just to name a few,” they said during the presentation.

It would take surprisingly little time, too. Their figures show that in the absence of solar wind erosion, Mars’ atmosphere would go up to as much as one half of Earth’s atmospheric pressure in a matter of years.

RelatedPosts

Curiosity measurements traces Martian air loss
Ancient Galaxies Really Sucked (Gas, That Is)
Felix Baumgartner: Mars missions are a waste of tax dollars
Stunning new map of Mars’ geology shows that it harbored much more water than previously assumed

The team agrees that at first glance, the concept may seem “fanciful”. But they point out to existing mini-magnetosphere technologies under development to shield astronauts and spaceships from radiation during deep space missions — technology which could be scaled up to protect a whole planet.

Still, it remains a highly theoretical plan with a high potential of not-going-according-to-plan. We don’t yet have the technology to make it happen, so we got our work cut out for ourselves. It would also be a huge engineering challenge to create, maintain, and properly place these magnets on the firmament.

But we understand what needs to be done and we could probably have the means to do so in a few years. If it does work, the magnets would turn Mars from a place where we’d need domed cities to Earth-like conditions in a few generations. That’s a huge payoff — a whole world’s worth of payoffs.

“It may be feasible that we can get up to these higher field strengths that are necessary to provide that shielding. We need to be able then to also modify that direction of the magnetic field so that it always pushes the solar wind away,” Green said.

“This is not terraforming as you may think of it where we actually artificially change the climate, but we let nature do it, and we do that based on the physics we know today.”

The team will continue refining the idea to get a more accurate estimate of how long the climate-altering effects would take.

“If this can be achieved in a lifetime, the colonisation of Mars would not be far away.”

The findings were presented at the Planetary Science Vision 2050 Workshop.

Tags: colonyMagnetsMarsnasaTerraform

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Astronomy

A NASA Spacecraft Just Spotted a Volcano on Mars Like We Have Never Seen Before

byTudor Tarita
1 week ago
Astronomy

Astronomers Found a Volcano Hiding in Plain Sight on Mars

byTudor Tarita
2 weeks ago
Geology

Scientists Used Lasers To Finally Explain How Tiny Dunes Form — And This Might Hold Clues to Other Worlds

byKimberly M. S. Cartier
3 weeks ago
News

Terraforming Mars Might Actually Work and Scientists Now Have a Plan to Try It

byTibi Puiu
3 weeks ago

Recent news

What’s Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

June 28, 2025

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

June 28, 2025

The world’s oldest boomerang is even older than we thought, but it’s not Australian

June 27, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.