ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Gecko-inspired adhesive allows robots to grip wider range of objects

The new gripper can grasp almost anything from pipes to porous rocks. Its primary application might be space.

Tibi PuiubyTibi Puiu
April 11, 2018
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

The agile gecko is one of nature’s best climbers — and its secret lies in the adhesive pads that line the feet. Now, researchers have combined the gecko toes’ adhesive properties with air-powered soft robotics to achieve unprecedented gripping sensitivity.

The gecko-gripper mounted a modified robotic arm at JPL, shown here lifting 45 lbs (20kg). Credit: JPL.
The gecko-gripper mounted a modified robotic arm at JPL, shown here lifting 45 lbs (20kg). Credit: JPL.

On a gecko’s toe, there are millions of microscopic hairs, each about 20 to 30 times smaller than a human hair. These hairs interact with molecules on the surface that the gecko is trying to grip at the atomic level, generating so-called van der Waals forces, which allow the toes to easily attach and detach when the gecko wills it.

Researchers at the University of California, San Diego, have devised an artificial version of the gecko toes’ microscopic features by employing synthetic materials and a technique called photolithography. In a three-step process, researchers first made a master mold of the millions of microscopic structures that line the gecko’s toes. Later, copies of the master mold were made using a low-cost, scalable method. A process called spin coating allowed the researchers to make as many copies of the adhesives sheets from the wax mold as they wished, at a rate of 10 to 20 sheets per hour. The soft robotic gripper itself was cast in 3D-print molds from a silicone-based rubber.

The team, which collaborated with NASA’s Jet Propulsion Laboratory, coated the 3D-printed fingers of a soft robotic gripper with the artificial gecko adhesive, which remarkably retained many of the same properties of its living, breathing counterpart.

During a series of experiments, the gecko-inspired adhesive allowed an air-powered robotic hand to grip a wide range of objects, from pipes to mugs. The adhesive was also strong and versatile enough to allow the robot to grasp objects at many different angles. The gripper also manipulated volcanic rocks whose porous and rough texture has always been challenging for gecko-like adhesives to cling to.

The gripper can also porous objects, like this volcanic rock. Credit: JPL.
The gripper can also porous objects, like this volcanic rock. Credit: JPL.

Because van der Waals forces are most effective on a larger surface area, the researchers had to develop control algorithms that allow the robot to distribute the right amount of force along the length of the finger. Thanks to optimal control and distribution of load, the gripper can lift various objects, in various positions, weighing up to 45 lbs (20kg).

“We realized that these two components, soft robotics and gecko adhesives, complement each other really well,” said Paul Glick, the paper’s first author and a Ph.D. student in the Bioinspired Robotics and Design Lab at the Jacobs School of Engineering at UC San Diego.

There are various applications that this research could enable. Since NASA was involved, one obvious area of interest is space exploration, where gecko-inspired adhesives might enable janitor-bots to collect trash or new grippers can attach to objects outside the International Space Station better and safer than ever before. Upcoming research will further investigate the adhesive’s potential for operation in zero-gravity.

RelatedPosts

Would you trust a malfunctioning robot in case of emergency? Most people would
Japanese hotel fires robots to replace them with humans
The Picotaur robot is nimble and weighs less than a grain of rice
Gecko-hand-gloves helps human climb wall like spiderman
Tags: armgeckorobot

Share23TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

In the UK, robotic surgery will become the default for small surgeries

byMihai Andrei
1 day ago
Future

These Robot Dogs Kept Going Viral on Social Media — Turns Out, They Have a Spying Backdoor

byMihai Andrei
2 months ago
Science

Kawasaki Unveils a Rideable Robot Horse That Runs on Hydrogen and Moves Like an Animal

byTibi Puiu
2 months ago
Future

This AI-Powered Robot Just Made Breakfast and It Could Cook in Your Future Home

byMihai Andrei
3 months ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.