ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Gecko-hand-gloves helps human climb wall like spiderman

Dragos MitricabyDragos Mitrica
November 20, 2014
in News, Technology, Videos
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

How many astronauts have gone to the moon?
Gecko feet may help keep art clean
Gecko-inspired ‘Velcro’ could help cleanup our growing space junk problem
Gecko-inspired adhesive allows robots to grip wider range of objects

Watch out, Spiderman! Stanford engineers recently demonstrated a pair of  gecko-inspired hand pads strong enough to pull the weight of an adult man and to allow him to climb a wall.

Scaling walls like a gecko

Geckos can run just as easily along a wall or ceiling as they can across a floor. This is due to special pads on their toes, which can even grip glass. No man-made adhesive technology comes even close to functioning as well as gecko feet. Credit: Institute for Creation Research
Geckos can run just as easily along a wall or ceiling as they can across a floor. This is due to special pads on their toes, which can even grip glass. No man-made adhesive technology comes even close to functioning as well as gecko feet. Credit: Institute for Creation Research

At the center of the gecko’s clinging ability are its specialized pads, located on the reptile’s toes, comprised of various satae (bristle- or hair-like structures ) on the tip of which lie tiny structures called spatulae, each less than a micron wide. These allow attraction forces called van der Waals interactions to arise between the adhesive setae and the surface. A single spatulae shows very weak molecular forces, however when coupled together in thousands of thousands on the satae, the attraction becomes very strong.

gecko climb
Credit: Stanford University

Inspired by the gecko, Stanford researchers led by Mark Cutkosky designed, created and tested out various types of artificial adhesives that could copy the high surface area of the setae on a gecko’s feet. After many, many failed attempts, the team finally found the right mix: an adhesive system made from a silicone material called polydimethylsiloxane (PDMS) that is layered as microscopic wedge. The biggest challenge was making the pads have “controllable adhesion”, so they could easily be switched on or off simply by transferring weight on the adhesive. Ultimately, the researchers were able to scale their designs on hand-sized pads that helped a 70kg male human scale a smooth vertical surface.

[RELATED] Gecko sex in space, and why this is useful for science

The pads could prove useful in manipulating huge solar panels, displays or other massive objects without any help from suction power or chemical glues. Perhaps, they might be most useful in space where astronauts could cling to surfaces of the Internationals Space Station, telescopes or satellites. The pads were reported in a paper published in the journal  Journal of the Royal Society Interface.

Tags: astronautgecko

ShareTweetShare
Dragos Mitrica

Dragos Mitrica

Dragos has been working in geology for six years, and loving every minute of it. Now, his more recent focus is on paleoclimate and climatic evolution, though in his spare time, he also dedicates a lot of time to chaos theory and complex systems.

Related Posts

Future

John McFall Becomes the World’s First Disabled Astronaut in Historic ESA Decision

byMihai Andrei
3 months ago
astronaut
News

Space Travel Slows Thinking Speed. But Astronauts Can Still Complete Tasks Accurately, Says New NASA Study

byJordan Strickler
6 months ago
The new gecko species. Image credits: Jörn Köhler.
Animals

This newly discovered gecko species was hiding in plain sight for decades

byFermin Koop
2 years ago
Future

The pharmanauts: how will astronauts produce drugs on deep space missions?

byMichelle Petersen
3 years ago

Recent news

This Startup Is Using Ancient DNA to Recreate Perfumes from Extinct Flowers

May 21, 2025

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

May 21, 2025

How One Man and a Legendary Canoe Rescued the Dying Art of Polynesian Navigation

May 21, 2025 - Updated on May 22, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.