Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • ZME & more
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
Home Science Physics

Quantum computers will be able to simulate particle collisions [w/ video]

by Mihai Andrei
June 3, 2012
in Physics, Technology
Share on FacebookShare on TwitterSubmit to Reddit

Quantum computers could answer numerous extremely complicated questions, impossible to unlock at the moment

Effective quantum computers are still far away, but researchers are already showing more and more advantages these devices would bring to the table. A trio of theorists have shown one more talent of a quantum computer: it would be powerful enough to study the inner workings of the universe in ways that are far beyond the reach of even the most powerful conventional supercomputers.

YouTube video

Storing quantum information in atoms or using qubits is already a thing of the present, but quantum computers still require technologies that will likely be perfected in a few decades. The genius move here is building processors that rely on quantum mechanics instead of classical mechanics – these laws allow quantum switches to exist in both on and off simultaneous, thus being able to consider all the possible solutions at once.

Graphical representation of particle collisions

Aside from bringing us some really cool and fast computers, it will also enable scientists to create some incredibly powerful quantum computers, which will be able to answer some of the biggest questions at the moment.

“We have this theoretical model of the quantum computer, and one of the big questions is, what physical processes that occur in nature can that model represent efficiently?” said Stephen Jordan, a theorist in NIST‘s Applied and Computational Mathematics Division. “Maybe particle collisions, maybe the early universe after the Big Bang? Can we use a quantum computer to simulate them and tell us what to expect?”

Questions such as this one involve keeping track of multiple elements and analyzing all their possible interactions, something which is just too much for today’s supercomputers. However, the team developed an algorithm that could run on any quantum computer, regardless of the specific technology which will be eventually used to build it. The algorithm would simulate all the possible interactions between two elementary particles colliding with each other, something that currently requires years of effort and a large accelerator to study.

ALSO READ:  Batman cloak-like chainmail switches from flexible to tough on command

Simulating these collisions is an enormously difficult problem for today’s digital computers because the quantum state of the colliding particles is very complex and, therefore, difficult to represent accurately with a feasible number of bits which only work with 0 and 1. The team’s algorithm, however, encodes the information that describes this quantum state far more efficiently using an array of quantum switches, making the computation far more reasonable.

Quantum entanglement

“What’s nice about the simulation is that you can raise the complexity of the problem by increasing the energy of the particles and collisions, but the difficulty of solving the problem does not increase so fast that it becomes unmanageable,” Preskill says. “It means a quantum computer could handle it feasibly.”

Even though their algorithm showed only one type of collision, they believe their work paves the way for exploring the entire theoretical foundation on which fundamental physics rests.

“We believe this work could apply to the entire standard model of physics,” Jordan says. “It could allow quantum computers to serve as a sort of wind tunnel for testing ideas that often require accelerators today.”

Via Physorg

Tags: quantum computerquantum entanglementqubit

ShareTweetShare
ADVERTISEMENT
ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • ZME & more

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • ZME & more
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.