Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

Scientists fed a game into players’ brains to pave the way for artificial senses

Just plug the console right into my head then, pleasethankyou!

Alexandru Micu by Alexandru Micu
December 12, 2016
in Mind & Brain, News, Tech

University of Washington researchers have hooked some people’s brains up to a computer and asked them to play a simple game — no monitor, speakers, or other stimulus included. And it worked. This is a vital first step in showing how humans can interact with virtual realities only through direct brain stimulation.

Game
Test subjects demonstrating how humans can interact with virtual realities via direct brain stimulation.
Image credits University of Washington.

“The way virtual reality is done these days is through displays, headsets and goggles, but ultimately your brain is what creates your reality,” said UW professor of Computer Science & Engineering and senior author Rajesh Rao.

The paper describes the first case of humans playing a simple, 2D computer game only through input from direct brain stimulation. Five players were presented with 21 different mazes to navigate, with a choice to move forward or down. The game offered them information of obstacles in the form of a phosphene, perceived blobs or bars of light generated through transcranial magnetic stimulation — a technique that uses magnetic coils placed near the skull to stimulate specific areas of the brain.

“The fundamental question we wanted to answer was: Can the brain make use of artificial information that it’s never seen before that is delivered directly to the brain to navigate a virtual world or do useful tasks without other sensory input? And the answer is yes.”

The participants made the right move (avoided obstacles) 15% of the time when they didn’t receive any input. But under direct brain stimulation, they made the right move 92% of the time. They also got better at the game the more they practiced their hand at detecting the artificial stimuli. This goes to show that new information — from artificial sensors or computers — can be successfully encoded and transmitted to the brain to solve tasks. The technology behind the experiment — transcranial magnetic stimulation — is usually employed to study how the brain works, but the team showed how it can be used to convey information to the brain instead.

“We’re essentially trying to give humans a sixth sense,” said lead author Darby Losey.

“So much effort in this field of neural engineering has focused on decoding information from the brain. We’re interested in how you can encode information into the brain.”

This trial was intended as a proof of concept and as such used a very simple binary system — whether a phosphene was present or not — as feedback for the players. But the experiment shows that in theory, the approach can be used to transmit information from any sensor, such as cameras or ultrasounds — to the brain. Even a binary system such as the one used for the game can give a lot of help to certain individuals, such as helping the blind navigate.

“The technology is not there yet — the tool we use to stimulate the brain is a bulky piece of equipment that you wouldn’t carry around with you,” said UW assistant professor of psychology and co-author Andrea Stocco.

“But eventually we might be able to replace the hardware with something that’s amenable to real world applications.”

The team is currently investigating how to create more complex perceptions of various senses by modulating the intensity and location of stimulation in the brain.

“Over the long term, this could have profound implications for assisting people with sensory deficits while also paving the way for more realistic virtual reality experiences,” Rao concluded.

The full paper “Navigating a 2D Virtual World Using Direct Brain Stimulation” has been published in the journal Frontiers in Robotics.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Neuropathologist examines brains of 111 N.F.L. players, finds 99% had degenerative disease linked to repeated blows to the head
  2. Skin-like material that stretches and senses might bring the tactile to the artificial
  3. Not the kill, but the thrill is what video game players love
  4. Storing solar energy: Researchers pave the way for artificial photosynthesis
  5. Honeybee brains could be a good model to study human brains on
Tags: braincomputerStimulation

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW