ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Nanotechnology

Nanomaterial converts light and heat into electricity

Tibi PuiubyTibi Puiu
November 13, 2012
in Nanotechnology, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Microwave harvester converts wireless energy into direct current with solar cell-like efficiency
New invisibility cloak takes things to the next level
Scientists cloak 3D object in microwave spectrum
Scientists count microscopic particles without a microscope
Yi-Hsuan Tseng et al./Nanotechnolog
(c) Yi-Hsuan Tseng et al./Nanotechnolog

Previously, scientists have managed to devise material that can convert light into electricity, and other materials that can convert heat into electricity. Now, a group of researchers  at University of Texas at Arlington have managed to create a hybrid material that can convert both forms of energy at the same time into electricity. This double spanned function gives it an edge over existing solutions, and since it’s very cheap, if the technology is improved it might even act as an alternative to conventional solar panels.

Single-walled carbon nanotubes (SWNTs) have been used in the construction of transparent solar cells and all-carbon solar cells, however when compared to conventional photovoltaic cells these are still highly inefficient. However, when also converting heat, not just light, into electricity, the resulting material becomes of novel interest.

“If we can convert both light and heat to electricity, the potential is huge for energy production,” said UT Arlington associate physics professor Wei Chen. “By increasing the number of the micro-devices on a chip, this technology might offer a new and efficient platform to complement or even replace current solar cell technology.”

The thermoelectric generator was made after the researchers combined copper sulfide nanoparticles and single-walled carbon nanotube. In lab tests, the new thin-film structure showed increases by as much at 80 percent in light absorption when compared to single-walled nanotube thin-film devices alone, making it a more efficient generator. The researchers soon plan an assembling a prototype thermoelectric generator that they hope can eventually produce milliwatts of power. The technology could be used in devices such as self-powering sensors, low-power electronic devices and implantable biomedical micro-devices.

Findings were documented in the Journal of Biomedical Nanotechnology. 

Tags: metamaterial

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

metamaterial
Future

Lightweight yet mighty: 3D-printed titanium metamaterial could change engineering

byJordan Strickler
1 year ago
The process - image via ITMO University.
Materials

Scientists count microscopic particles without a microscope

byMihai Andrei
9 years ago
Some of the designs that the team used as inspiration.
Image credits A Rafsanjani/McGill University.
Design

Islamic art inspires metamaterial that grows when stretched

byAlexandru Micu
9 years ago
News

Magnetic Mirror reflects Light like No Other. Opens new suit of Optical Applications

byTibi Puiu
11 years ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.