ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

The International Space Station is teeming with bacteria and fungi

Step 1: live on hairless primate. Step 2: wait for said primate to go to space. Step 3: PROFIT!

Alexandru MicubyAlexandru Micu
April 9, 2019
in Biology, Health, News, Science, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Where humanity goes, microorganisms boldly follow.

Tracy Caldwell Dyson in ISS Cupola.
Self-portrait of Tracy Caldwell Dyson in the Cupola module of the International Space Station observing the Earth below during Expedition 24.
Image credits NASA / Tracy Caldwell Dyson via Wikimedia.

New research is pinpointing exactly who makes up the microflora on the International Space Station. The study — the first comprehensive catalogue of the bacteria and fungi on the inside surfaces of the ISS — can be used to develop safety measures for NASA for long-term space travel or living in space.

Space bugs

“Whether these opportunistic bacteria could cause disease in astronauts on the ISS is unknown,” says Dr Checinska Sielaff, first author of the study. “This would depend on a number of factors, including the health status of each individual and how these organisms function while in the space environment. Regardless, the detection of possible disease-causing organisms highlights the importance of further studies to examine how these ISS microbes function in space.”

Microflora can have a range of impacts on human health, so it pays to know exactly what you’re up against — especially in space. Astronauts show an altered immune response during missions, which is compounded by the difficulty of giving them proper medical care. The team hopes that their catalog can give future space mission planners a better idea of which bugs accumulate in the unique environments associated with spaceflight, how long each strain survives, and their possible impact on the crew and the ship itself.

Despite the exotic setting, the team used pretty run-of-the-mill culture techniques to sample the microflora of eight different locations inside the ISS. These included the viewing window, toilet, exercise platform, dining table, and sleeping quarters. The samples were taken during three flights across 14 months’ time, so the team could get an idea of how the tiny organisms fared over time. Genetic sequencing methods were used to identify the strains in these samples.

All in all, the team reports finding mostly human-associated microbes on the ISS. The most prominent included Staphylococcus (26% of total isolates), Pantoea (23%), and Bacillus (11%). The analysis also revealed the presence of bugs considered to be opportunistic pathogens here on Earth — such as Staphylococcus aureus (10% of total isolates identified), which is commonly found on the skin and in the nasal passages, and Enterobacter, which is associated with the human gastrointestinal tract. Opportunistic pathogens are regulars in gyms, offices, and hospitals, the team explains, suggesting that the ISS’s microbiome is also shaped by human occupation, as is similar in microbiome to other built environments.

But it’s not all about the crew.

“Some of the microorganisms we identified on the ISS have also been implicated in microbial induced corrosion on Earth. However, the role they play in corrosion aboard the ISS remains to be determined,” says Dr Urbaniak, joint first author of the study.

“In addition to understanding the possible impact of microbial and fungal organisms on astronaut health, understanding their potential impact on spacecraft will be important to maintain structural stability of the crew vehicle during long term space missions when routine indoor maintenance cannot be as easily performed.”

Fungal communities were quite stable over the study’s period, but microbial communities changed over time (but not across locations). Samples taken during the second flight mission had higher microbial diversity than samples collected during the first and third missions. The authors suggest that these temporal differences may come down to which astronauts are aboard the ISS at any given time. Dr Venkateswaran hopes this data can help NASA improve on-board safety measures, and that they will pave the way to safe, deep space human habitation.

RelatedPosts

This common bacterium grows 60% better in space than on Earth
Oldest fossil in the world found, scientists claim
Researchers find four strains of bacteria on the ISS — three are completely new to science
Dragonfly dual-quadcopter drone proposed to explore Titan to understand how life appeared

“The results can also have significant impact on our understanding of other confined built environments on the Earth such as clean rooms used in the pharmaceutical and medical industries,” he adds.

The paper “Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces” has been published in the journal Microbiome.

Tags: bacteriafungigermsInternationalissSpaceStation

Share20TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Biology

Scientists Taught Bacteria to Make Cheese Protein Without a Single Cow

byTudor Tarita
4 weeks ago
Chemistry

A Simple Heat Hack Could Revolutionize How We Produce Yogurt

byMihai Andrei
4 weeks ago
Health

There might be an anti-aging secret hiding in magic mushrooms

byTudor Tarita
4 weeks ago
Environment

This New Bioplastic Is Clear Flexible and Stronger Than Oil-Based Plastic. And It’s Made by Microbes

byTudor Tarita
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.