ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Trained bacteriophages could help us with our drug resistance issues

If you can't beat them -- hire mercenaries.

Alexandru MicubyAlexandru Micu
June 8, 2021
in Biology, Health, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Antibiotic-resistant bacteria are giving our medicine an increasingly-harder time. Bacteriophages however, viruses that prey on bacteria, could help us regain the upper hand.

A bacteriophage model made out of digital Lego blocks. Image credits Pascal / Flickr.

We’re quite spoiled in this modern day and age. Things as minor as cutting a finger are dealt with a wash, bandage, and an antibiotic at most — but they could be very deadly for our ancestors even 100 years ago. But as time passes, bacteria adapt to the drugs they’re exposed to, developing resistance.

It’s estimated that by 2050, antibiotic-resistant bacteria will claim over 10 million lives, as our existing therapies lose effectiveness and patients are left vulnerable.

Bacteria eaters

“Antibiotic resistance is inherently an evolutionary problem, so this paper describes a possible new solution as we run out of antibiotic drug options,” says Joshua Borin, lead author of the study. “Using bacterial viruses that can adapt and evolve to the host bacteria that we want them to infect and kill is an old idea that is being revived. It’s the idea of the enemy of our enemy is our friend.”

Bacteriophages, or phages for short, are viruses that specialize in infecting and reproducing using bacteria. They’re quite like the viruses that make us sick, only with a different ‘meal’ preference.

A new project led by researchers at the University of California San Diego, Biological Sciences department, have shown that phages can be trained, so to speak, to make them better able to attack and destroy bacteria. These pre-trained phages could help delay the onset of antibiotic resistance in groups of bacteria by physically destroying them (rather than chemically, as drugs do), and the team showcases this potential in their experiments. The study also included researchers at the University of Haifa in Israel and the University of Texas at Austin

The experiment was carried out in a series of unassuming laboratory flasks. Boiled down, it involved training specialized phages to recognize and attack certain bacterial strains, in preparation for a final ‘target’. The secret here is that the phages are given an opportunity to better adapt to their prey while kept in the flasks (through natural evolutionary processes). Phages that were ‘trained’ for 28 days, the team explains, were 1,000 times more efficient at suppressing the bacterial colony than untrained ones, and for between three to eight times as long.

“The trained phage had already experienced ways that the bacteria would try to dodge it,” said Associate Professor Justin Meyer, the study’s corresponding author. “It had ‘learned’ in a genetic sense. It had already evolved mutations to help it counteract those moves that the bacteria were taking. We are using phage’s own improvement algorithm, evolution by natural selection, to regain its therapeutic potential and solve the problem of bacteria evolving resistance to yet another therapy.”

While the findings are encouraging, they’re still quite preliminary — more of a proof of concept, if you will. Moving forward, the team wants to test their approach on strains of bacteria important in clinical settings, such as E. coli. Its viability as a treatment option will also be checked using animal models.

RelatedPosts

Bacteria’s social lives influence how they develop drug resistance
Untreatable bacteria identified in the US
Building houses with bacteria
Healthy plants grown in lunar soil for the first time

The paper “Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance” has been published in the journal PNAS.

Tags: antibiotic resistancebacteriabacteriophage

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Students listen to their teacher during class at as school run by the Abdi Hawa Center in the Afgoye corridor of Somalia on September 25.

More:

 Dr. Hawa, an internationally recognized humanitarian, established the Hawa Abdi Center in 1983, and has catered for tens of thousands over the years displaced by civil war in Somalia. The center now contains an IDP camp, a school, and a hospital. AU UN IST PHOTO / Tobin Jones. Original public domain image from Flickr
Health

Superbugs are the latest crisis in Sub-Saharan Africa

byMihai Andrei
4 weeks ago
Biology

The secret to making plant-based milk tastier and healthier: bacteria

byAlexandra Gerea
1 month ago
Health

Scientists Discover Natural Antibiotics Hidden in Our Cells

byTudor Tarita
1 month ago
Biology

Can Bacteria Solve Crimes? The “Sexome” Could Help Catch Sexual Predators

byMihai Andrei
3 months ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.