Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Biology

Biological wheels and motors imaged for the first time

Morgan Beeby and his colleagues at the Imperial College London used electron microscopy to image these biological motors in high resolution and three dimensions for the first time.

Alexandru Micu by Alexandru Micu
March 15, 2016
in Biology, Discoveries, News, Research, Science

Wheels of life.
Image credits Morgan Beeby/Imperial College London.

Pretty, isn’t it? This is an image of a bacterial flagellum, the only example of a biological wheel that we know of. Spun by nano-sized protein motors, it acts as a propeller powering bacteria such as Campylobacter forward.

Morgan Beeby and his colleagues at the Imperial College London used electron microscopy to image these structures in high resolution and three dimensions for the first time. With the powerful magnification these microscopes are capable of, even the tiny mechanisms that provide minute amounts of torque to the motors become visible.

Beeby’s team used electron cryotomography, a method that freezes the bacteria, to allow the motor to be imaged from all angles.

These wheels come in a wide variety of shapes, sizes, and power output. Campylobacter’s motor for example is powerful enough to allow the bacteria to penetrate through the protective layer of cells in your digestive tract. A wheel-like structure at the base of the flagellum, called a stator, provides the torque necessary for this.

Campylobacter and Salmonella motors.
Image credits Morgan Beeby/Imperial College London.

Campylobacter has almost twice as many stators as Salmonella, and these sit in a wider ring — this gives it increased torque and leverage.

In fact, these motors are so efficient that nano-roboticists are looking for ways to incorporate them into their nanites to avoid having to develop and build their own.

The full paper, titled “Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold” has been published online in the journal PNAS and can be read here.

 

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Motors developed for space station drive self-charging prosthetic leg
  2. Dandelions may be used to produce Ford wheels
  3. Scientists taught a goldfish to drive a watery tank on wheels — and it’s pretty good at it
  4. Check the wheels on that thing: Boston Dynamics’ latest robot overlord
  5. The smallest lifeform imaged:150,000 cells could fit onto the tip of a human hair
Tags: bacteriaBiologyFlagellumlifeMotorsRotorswheels

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW