ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Robotics

Silicon robot hops 30 times its own height using combustion

Tibi PuiubyTibi Puiu
February 11, 2013 - Updated on February 22, 2019
in Research, Robotics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Flying ‘Robotic pigeon’ brings us closer to bird-like drones
Graphene layered in 3D crystal structure might allow for electronics revolution
What are the mechanics of trustworthiness? You need to ask a robot, ironically
Half of U.S. jobs at risk of being taken over by computers

Researchers at Harvard University in Cambridge, Massachusetts, have developed a three-legged silicon robot that uses chemical reactions to help it leap up to 30 times its own height. Combustion is typically used in hard systems like internal combustion engines where the heat generated by the chemical reaction can be withstood, but this latest demo proves that the material can withstand high working temperatures as well.

Rapid actuation of a soft robot (composed of silicone elastomers) was achieved using high-temperature chemical reactions. (c) Nature
Rapid actuation of a soft robot (composed of silicone elastomers) was achieved using high-temperature chemical reactions. (c) Nature

The key to the robots leaping ability lies in a smart soft valve, positioned at the end of a channel present in each of the three legs. This smart valve allows just the right mix of oxygen and methane to mix – one part methane to two parts oxygen. Then, the same computer that regulates how much gas is let in the channels  controls a high-voltage cable connected to electrodes in each leg. When it deems fit, the electrodes spark which causes the gas mixture to react in combustion, forming CO2 and water, while also releasing a lot of energy.

This energy kick is what allows the silicon robot to hop up to 30 times its own height, but this would have never been possible without destroying the robot were it not, yet again, for the tiny valve.  It closes in response to high pressure, thus making the pressure even higher, and then it opens after the explosion to let the exhaust gases out.


Up until now a similar effect was replicated using compressed air only, as it was thought that the high heat associated with combustion would simply fry it. The Sand Flea, another leaping robot we reported earlier on, uses compressed air to fling itself pass obstacles as high as 10 meters high. Using a smart valve system and a cleverly balanced chemical reaction, the researchers proved that combustion can be made in other soft system as well.

As for some genuine applications for this silicon leaping robot, the researchers envision their device could be used for search-and-rescue operations, leaping and cartwheeling its way over any obstacles that might block its path.

The robot was documented in a paper published in the journal Nature.

Tags: combustionmaterial sciencerobotssilicon

ShareTweetShare
Tibi Puiu

Tibi Puiu

Related Posts

Future

China Just Made the World’s Fastest Transistor and It Is Not Made of Silicon

byTibi Puiu
2 months ago
News

China released an open source kung-fu robot and we’re not really sure why

byMihai Andrei
3 months ago
Future

How a “Schrödinger’s cat” atom with seven lives embedded in a silicon chip could change quantum computing

byTibi Puiu
5 months ago
Future

Meet the smallest and fastest robot-insects ever developed

byMihai Andrei
1 year ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.