Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Chemistry

Carbon nanotube fiber can carry four times more charge than copper

Tibi Puiu by Tibi Puiu
November 16, 2020
in Chemistry, Materials, News, Research

Reliable, well supplied and with years and years of manufacturing experience behind it, copper is the most widespread material used for delivering electrical charge. Some applications warrant more efficient materials, though,  and researchers at Rice recently showed that carbon nanotubes spun into fiber can carry four times as much electrical charge than copper cables of the same mass.

Of course, carbon nanotubes taken individually can deliver 1,000 times more current than copper, but real-world applications require macroscopic conductors. Previous attempts at mustering carbon nanotubes for high power electrical charge failed, however Rice University researchers demonstrated that wet-spun carbon nanotube fiber is a good alternative.

Rice professors Junichiro Kono and Matteo Pasquali developed a strong and flexible cable even though at 20 microns wide, it’s thinner than a human hair. For benchmark purposes, the researchers analyzed the “current carrying capacity” (CCC), or ampacity, of the nanotube fiber against that of copper cables. Four mediums were chosen for this analysis: open air, in a vacuum and in nitrogen or argon environments.

Scanning electron microscope images show typical carbon nanotube fibers created at Rice University and broken into two by high-current-induced Joule heating. Rice researchers broke the fibers in different conditions — air, argon, nitrogen and a vacuum — to see how well they handled high current. The fibers proved overall to be better at carrying electrical current than copper cables of the same mass. (Credit: Kono Lab/Rice University)
Scanning electron microscope images show typical carbon nanotube fibers created at Rice University and broken into two by high-current-induced Joule heating. Rice researchers broke the fibers in different conditions — air, argon, nitrogen and a vacuum — to see how well they handled high current. The fibers proved overall to be better at carrying electrical current than copper cables of the same mass. (Credit: Kono Lab/Rice University)

The number one cause of electrical cable failure is overheating. When current passes through a conductor, it also produces heat because of the material’s resistivity. When temperatures exceed rated values, the cable gets too hot, breaks and, of course, can potentially become a fire hazard. Concerning the carbon nanotube fibers, those working in nitrogen atmosphere proved to have the best CCC, followed   by argon and open air, all of which were able to cool through convection. The same nanotube fibers in a vacuum could only cool by radiation and had the lowest CCC.

“The outcome is that these fibers have the highest CCC ever reported for any carbon-based fibers,” Kono said. “Copper still has better resistivity by an order of magnitude, but we have the advantage that carbon fiber is light. So if you divide the CCC by the mass, we win.”

Ever carried a copper or aluminium cable? That’s some heavy gear, but not because of the conducting material itself, but rather because both copper and aluminium don’t have a high tensile strength, a heavy steel-core reinforcement is needed to support the cable. In applications where weight is an important factor to consider, like aerial or spacial projects, carbon nanotube fiber could prove to be a better option, according to the Rice scientists.

Pasquali even suggested the thread-like fibers are light enough to deliver power to aerial vehicles. We’ve heard of wackier stuff work.

 “Suppose you want to power an unmanned aerial vehicle from the ground,” he mused. “You could make it like a kite, with power supplied by our fibers. I wish Ben Franklin were here to see that!”

Details were published in the journal Nanoscale. [story via Kurzeweil]

Was this helpful?


Thanks for your feedback!

Related posts:
  1. “Copper kills everything”: A Copper Bedrail Could Cut Back On Infections For Hospital Patients
  2. Dietary fiber is good for you, but not all fiber is created equal
  3. Carbon nanotube transistor outperform silicon for the first time — a turning point in electronics
  4. Physicists map gigantic supercharged lightning jets with 100 times more charge than regular lightning bolts
  5. How crazy ants carry dinner 100 times their size: coordination and individual leadership
Tags: carbon nanotubescopperelectrical charge

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW