Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Biology

New method allows large molecules to get squeezed through cell membranes

Tibi Puiu by Tibi Puiu
January 23, 2013
in Biology, Health, Research

A group of researchers at MIT have devised a new method for infiltrating cells with large molecules such as nanoparticles or proteins that is a lot more non-intrusive and doesn’t damage the cell. Imaging target cells or growing more stable stem cells might thus be possible with this method.

As cells squeeze through a narrow channel, tiny holes open in their membranes, allowing large molecules such as RNA to pass through. Image: Armon Sharei and Emily Jackson
As cells squeeze through a narrow channel, tiny holes open in their membranes, allowing large molecules such as RNA to pass through.
Image: Armon Sharei and Emily Jackson

Every cell has a membrane, which is put to great use as it protects the cell’s inner environment by regulating what gets in and what gets out. Typically, you don’t want foreign molecules entering your cells, but sometimes you do. Various methods have been employed to breach cell membranes and introduce other bodies, however these tend to be intrusive and sometimes can lead to the damaging and even destruction of the cell.

The MIT method of introducing large molecules in cell is a lot safer and efficient and implies squeezing the cell through a narrow construction just enough for tiny, yet temporary, gaps to surface. Prior to squeezing the cell, large molecules – be it RNA, proteins or nanoparticles – are tasked to float outside cell, such that when the holes pop these slide through the membrane instantly.

Through this technique the MIT researchers were able to deliver reprogramming proteins which turned the target cells into pluripotent stem cells – notoriously difficult to generate efficiently – with a success rate 10 to 100 times better than any other existing method. A simply massive advancement. Also, they’ve also tested the method with other large molecules like special nanoparticles, like carbon nanotubes or quantum dots, to image cells and thus monitor their activity.

“It’s very useful to be able to get large molecules into cells. We thought it might be interesting if you could have a relatively simple system that could deliver many different compounds,” says Klavs Jensen, the Warren K. Lewis Professor of Chemical Engineering, professor of materials science and engineering, and a senior author of a paper describing the new device in this week’s issue of the Proceedings of the National Academy of Sciences.

The team’s fantastic research builds upon previous work, when Jensen and Robert Langer, the David H. Koch Institute Professor at MIT and also a study lead author, forced molecules into cells as they flowed through a microfluidic device. The process was slow and not very effective, but it was during this time that the researchers learned that if you squeeze a cell just right now, tiny holes will appear – pure windows of opportunity.

Capitalizing on this, the scientists then proceeded to adjust their set-up and devised some rectangular microfluidic chips, no larger than a quarter, fitted with 40 to 70 parallel channels.  Cells are suspended in a solution with the material to be delivered and flowed through the channel at high speed — about one meter per second. Halfway through the channel, the cells pass through a constriction about 30 to 80 percent smaller than the cells’ diameter. The cells don’t suffer any irreparable damage, and they maintain their normal functions after the treatment.

“This appears to be a very broadly applicable approach for loading a diversity of different compounds into a diversity of different cells,” says Mark Prausnitz, a professor of chemical and biomolecular engineering at Georgia Tech, who was not part of the research team. “It’s a really nice example of taking devices from the world of engineering and microelectronics and using them in quite different ways to solve problems in medicine that could have really great impact.”

 

source: MIT

Was this helpful?


Thanks for your feedback!

Related posts:
  1. ‘Squeezed light’ with less noise than found in vacuum to boost sensors
  2. New method allows visualizing of protein self-assembly – paves way for nanotech against diseases
  3. Water squeezed in a new state: not liquid, nor solid or gas. Just pure quantum weirdness
  4. Revolutionary material can absorb 90 times its weight in spilled oil. It can be squeezed like a sponge and then reused
  5. New STEM cell technology allows scientists to grow retinal nerve cells
Tags: carbon nanotubesnanoparticlespluripotent stem cellsquantum dots

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW