Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Health → Genetics

Stem Cell therapy could help us grow back fingers

Mihai Andrei by Mihai Andrei
June 14, 2013
in Genetics

Mammals can naturally regenerate the very top of their fingers and toes after amputation; starting from this idea, researchers have demonstrated the mechanism that describes this process, and explain how stem cells from nails could play a pivotal role in future regeneration of entire fingers.

fingers

A study conducted on mice showed that the chemical signal that triggers stem cells to develop into new nail tissue also attracts nerves that promote bone and nerve regeneration. The study suggests that nail stem cells could be used to develop new regeneration treatments for amputees.

Mice are pretty similar to humans in thhis regard – in both species, regenerating a finger starts with regenerating the nail. But whether the amputated portion of the digit actually takes place depends on exactly where the amputation occurs – if the stem cells in the nails are amputated as well, then no regeneration takes place. But if a small portion of the nail still remains in place, then it does regenerate. To understand exactly why these stem cells are so important, researchers turned to mice.

The two unfortunate groups of mice were separated into two groups – one control group, and one which was treated with a drug that made them unable to make the signals for new nail cells to develop. The second group was unable to regenerate, while the first one did this just fine, in time. When the signal was replenished, the second group resumed regeneration.

Limb regeneration is a very interesting field for biologists at the moment; a vast number of animals can regenerate lost limbs, most notably amphibians – aquatic salamanders can regenerate complete limbs, and even parts of their heart, by a process which involves their immune system. By studying species which are close to us and understanding the mechanism through which they regenerate, we could some day apply the same techniques to humans.

Via Discovery

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Young man paralyzed from the neck down regains arm and hand movement following stem cell therapy
  2. New STEM cell technology allows scientists to grow retinal nerve cells
  3. Turns out, online therapy can be just as effective as face-to-face therapy
  4. Could a combination of drug therapy and stem cells reverse type 2 diabetes?
  5. Human Embryonic Stem Cell Lines Created Without The Destruction Of Embryos
Tags: limbregenerationstem cell

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW