ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

‘Zombie star’ cheats death again and again, dumbfounding scientists

A unique astronomical event is leaving many scientists scratching their heads.

Tibi PuiubyTibi Puiu
November 9, 2017
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

A unique astronomical event is leaving many scientists scratching their heads. It all started in 2014 when astronomers picked up a seemingly typical supernova in the Big Bear constellation. But instead of getting fainter following its big finale, the supernova dipped and jumped in brightness multiple times. Though faint now, it’s still shining, even though a normal supernova would have extinguished long ago. This is a death-defying star if we’ve ever seen one.

Artist impression of Type11b supernova. Credit: Pixabay.
Artist impression of Type11b supernova. Credit: Pixabay.

The object, which astronomers have dubbed iPTF14hls, was initially classed as a Type II-P supernova, the most common type there is. One year later, though, Iair Arcavi and colleagues at the University of California, Santa Barbara, found that the supernova’s brightness increased. Typically, a supernova quickly peaks in brightness and then gradually fades away within 100 days. Our odd object grew dimmer and brighter in multiple pulses and is still going strong 600 days later, although it’s now gradually fading. It’s brightness mind-bogglingly fluctuated up and down at least five times that we know of.

This is as a close as you’ll get to a realistic supernova shock breakout. A supernova initially brightness up in a huge flash. Credit: NASA.
This is as a close as you’ll get to a realistic supernova shock breakout. A supernova initially brightness up in a huge flash. Credit: NASA.

Supernovae don’t behave like this at all. It’s totally anomalous and scientists aren’t sure what’s going on.

A supernova is a stellar explosion of cosmic proportions — death throes of old stars between eight and about 50 times the mass of the sun. They’re one of the brightest events in the universe, which can often outshine the entire galaxy it is located in, before fading away in a matter of weeks or months. During this short period, however, supernovae emit as much energy as the Sun emits during its entire lifespan.

Initially, Arcavi’s team thought it was dealing with a nearby star in our galaxy which appears brighter just because it’s closer. That’s hardly the case since iPTF14hls is located about 500 million light-years from Earth in a small, far-away galaxy.

Supernova iPTF14hls fluctuated in brightness at least five times, which is unheard of. Credit: S. Wilkinson/LCO.
Supernova iPTF14hls fluctuated in brightness at least five times, which is unheard of. Credit: S. Wilkinson/LCO.

To make things even weirder than they already were, the astronomers realized that a supernova was seen in the exact location in 1954. Astronomers have never observed unrelated supernovae occurring the same place decades apart. The chances that the two events aren’t related are very dim. This whole puzzling event is characterized by features that are unheard of.

According to one theory, some stars with a mass between 95 and 130 times that of the Sun can explode several times in cyclic deaths. In such stars, temperature rises to dizzying levels, in excess of 3 billion C (5.4 billion F) in the core, causing oxygen — then heavier elements — to fuse, blowing off massive amounts of material and resetting the cycle. This process repeats itself until iron is formed, at which point elements stop fusing and the star collapses in a black hole. The problem is that this model, called the pulsation pair instability (PPI) supernova, can’t account for the massive amount of energy released by iPTF14hls so far. What’s more, no such phenomena as observed thus far in order to validate this theoretical model.

RelatedPosts

Astronomers say exploding stars might have forced our ancestors to walk upright
Astronomers stumble upon largest explosion in the universe thus far
New type of supernova discovered. Hint: it’s tiny and faint
Supernova observed right after its explosion
Credit: ESO.
Credit: ESO.

Another hypothesis suggests  iPTF14hls is, in fact, a magnetar — a rapidly spinning neutron star. It can spin 1,000 times per second and can pack the mass of 1.5 Suns in about the size of New York City. The spinning motion generates a massive magnetic field 100 trillion to 1 quadrillion times the strength of Earth’s field. Such a highly magnetized neutron star can shine brightly for around two years. However, a magnetar can’t explain the 1954 eruption, nor does the theory account for the dips and peaks in iPTF14hls’ brightness.

For now, we’ll just have to sit and wait it out until astronomers gather more data. As the supernova fades away, scientists should be able to peer deeper into the object’s structure — whatever it may be. In any case, this freak occurrence might change a lot about what science knows about both supernovae and galaxies. It suggests that star heavier than 100 solar masses can still form in the recent universe, which could have far-reaching ramifications.

Scientific reference: I. Arcavi et al. Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. Nature. Vol. 551, November 9, 2017, p. 210. doi: 10.1038/nature24030.

Tags: supernova

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
23 hours ago
News

Astronomers Spotted a Ghostly Star Orbiting Betelgeuse and Its Days Are Already Numbered

byTudor Tarita
3 weeks ago
SNR 0509-67.5
News

Astronomers Found a Star That Exploded Twice Before Dying

byJordan Strickler
1 month ago
News

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova

byTibi Puiu
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.