ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Remote sensing

New type of supernova discovered. Hint: it’s tiny and faint

Tibi PuiubyTibi Puiu
March 27, 2013 - Updated on July 25, 2023
in Remote sensing, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Supernovae are highly energetic events caused by the explosion of stars that are at times so bright they can outshine whole galaxies. These are thought to occur in two varieties, but a recently published paper has a described a third type of supernova, one that’s fainter than the other two and distinguishes itself by the fact that its parent star isn’t necessarily obliterated in the supernova event.

The two main types of supernovae discovered thus far are core-collapse and Type Ia supernovae. The first is the brightest and most energetic typically occurring in the wake of the explosion of a star 10 to 100 times as massive as our sun. Type Ia supernovae on the other hand surface when white dwarf stars are destroyed – faint star remnants that have passed their lifetime and are out of fuel.

: This artist's conception shows the suspected progenitor of a new kind of supernova called Type Iax. Material from a hot, blue helium star at right is funneling toward a carbon/oxygen white dwarf star at left, which is embedded in an accretion disk. In many cases the white dwarf survives the subsequent explosion. Image is provided courtesy of Christine Pulliam (CfA).
: This artist’s conception shows the suspected progenitor of a new kind of supernova called Type Iax. Material from a hot, blue helium star at right is funneling toward a carbon/oxygen white dwarf star at left, which is embedded in an accretion disk. In many cases the white dwarf survives the subsequent explosion. Image is provided courtesy of Christine Pulliam (CfA).

The newly discovered category of supernovae is called a Type Iax and essentially encompasses tiny supernovae that are fainter than Type Ia supernovae and which, as the latter, come from exploding white dwarfs. The main difference between the two lies in the fact that while a Type Ia will completely obliterate the generating white dwarf, a Type Iax won’t necessarily cause this.

The team of astronomers at Carnegie Institute for Science, led by Max Stritzinger, has identified so far 25 examples of the new type of supernova, none of which having been found in elliptical galaxies, typically filled with older stars, suggesting Type Iax supernovae are generated by young star systems. The reason they haven’t been identified until now is because they’re very faint and only recently after a technological barrier was breached could astronomers study them.

Based on their collection of astronomical data, the researchers claim Type Iax supernovae come from binary systems formed out of a white dwarf and a companion  star that has lost its outer hydrogen, leaving it helium dominated. The latter becomes thus exposed to the hungry for fuel white dwarf that will feed helium off the normal star.

The exact mechanisms that trigger Type Iax haven’t been identified yet, but the researchers believe it’s possible  the outer helium layer ignites first, sending a shock wave into the white dwarf. Just as well,  the white dwarf might ignite first due to the influence of the overlying helium shell.

Oddly enough, though newly discovered, it’s believed Type Iax are about a third as common as Type Ia supernovae. “The closer we look, the more ways we find for stars to explode,” the authors note.

RelatedPosts

Supernova flings star out of the Milky Way – it’s the fastest moving star ever
Astronomers Just Found Stars That Mimic Pulsars — And This May Explain Mysterious Radio Pulses in Space
Astronomers witness giant star explode into a supernova for the first time
Newly imaged nebula looks like a manatee in space

The Type Iax supernovae have been reported in a paper published in The Astrophysical Journal. 

Tags: supernovawhite dwarf

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Early cosmic explosions may have filled the young universe with water

byJordan Strickler
4 months ago
This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the US National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. The striking reds, yellows, and blues in this image were achieved through the use of three DECam filters that each collect a specific color of light. Separate images were taken in each filter and then stacked on top of each other to produce this high-resolution image that contains 1.3 gigapixels and showcases the intricate web-like filaments snaking throughout the expanding cloud of gas.
Astronomy

Cosmic fireworks: zombie star explodes, creating massive filament structures

byMihai Andrei
5 months ago
Artist's impression of an evolving white dwarf (foreground) and millisecond pulsar (background) binary system. Using the 4.1-meter SOAR Telescope on Cerro Pachón in Chile, part of Cerro Tololo Inter-American Observatory, a Program of NSF's NOIRLab, astronomers have discovered the first example of a binary system consisting of an evolving white dwarf orbiting a millisecond pulsar, in which the millisecond pulsar is in the final phase of the spin-up process. The source, originally detected by the Fermi Space Telescope, is a “missing link” in the evolution of such binary systems.
News

Astronomers Just Found Stars That Mimic Pulsars — And This May Explain Mysterious Radio Pulses in Space

byJordan Strickler
5 months ago
Astronomy

Cannibal star gets a magnetic scar after devouring chunks of its solar system

byMihai Andrei
1 year ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.