ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Newly found gassy exoplanet has mass similar to Earth’s

Tibi PuiubyTibi Puiu
January 7, 2014
in News, Remote sensing, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
Artist impression of KOI-314c. Credit: C. Pulliam & D. Aguilar (CfA)
Artist impression of KOI-314c. Credit: C. Pulliam & D. Aguilar (CfA)

A team of astronomers recently discovered a new exoplanet some 200 light years away whose mass is about the same as Earth’s – the first Earth-mass planet that transits, or crosses in front of, its host star. Although very similar in mass, the planet is 60% larger in diameter suggesting it has a thick atmosphere. Due to its very short orbital period, the planet’s surface is most likely scorching hot and, consequently, unfit to foster life.

Astronomers used data from NASA’s Kepler spacecraft, now defunct, to identify the exoplanet KOI-314c, which orbits a dwarf star. Considering the exoplanet is very far away from Earth and it orbits a very faint star, describing KOI-314c in terms of mass and size was no easy task.

Typically, scientists rely on fairly straightforward method for determining the mass of planets outside our solar system that relies on studying wobbles of the parent star induced by the planet’s gravity. This only works accurately for big planets, at least 1.5 times the size of Earth, that orbit bright stars. For KOI-314c, the researchers used a different technique.

A new method for finding low-mass exoplanets

Known as transit timing variations (TTV), the method, which works only for systems with at least two planets, measures the slight tug planets make on each other, that slightly changes the times that they transit their star.

“Rather than looking for a wobbling star, we essentially look for a wobbling planet,” explains second author David Nesvorny of the Southwest Research Institute (SwRI). “Kepler saw two planets transiting in front of the same star over and over again. By measuring the times at which these transits occurred very carefully, we were able to discover that the two planets are locked in an intricate dance of tiny wobbles giving away their masses.”

Thus, the researchers found KOI-314c is only 30 percent denser than water. This suggests that the planet is enveloped by a significant atmosphere of hydrogen and helium hundreds of miles thick. It might have begun life as a mini-Neptune and lost some of its atmospheric gases over time, boiled off by the intense radiation of its star. The team estimates its temperature is 220 degrees Fahrenheit, too hot for life as we know it.

The second planet, KOI-314b, is about the same size as KOI-314c but much denser, weighing about 4 times as much as Earth. It orbits the star every 13 days, meaning it is in a 5-to-3 resonance with the outer planet.

The TTV method was used for the first time in 2010, and these latest findings show that it can be particularly useful when studying low-mass exoplanets. However, it seems to be effective only when discussing systems with multiple planets. For those of you interested, I invite you read about a new exoplanet hunting technique I wrote about a while ago. Called MassSpec, this method employs transmission spectroscopy – concentrating on measuring light from a star passing through an exoplanet’s atmosphere – and is reportedly accurate for studying the mass of exoplanets that are both low mass and orbit a faint parent star.

RelatedPosts

European Observatory (ESO) assembles 9 gigapixel image with 84 million stars
Astronomers discover planet that shouldn’t be there
Scientists find extreme exoplanet raining with iron
Dwarf planet Eris, which led to Pluto’s demise as a planet, may bring back it’s status
Tags: dwarf starexoplanetKeplerplanet

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

This Planet Is So Close to Its Star It Is Literally Falling Apart, Leaving a Comet-like Tail of Dust in Space

byJordan Strickler
2 months ago
News

Astronomers Discover 128 New Moons Around Saturn Securing Its Title as the Moon King and Leaving Jupiter in the Dust

byTibi Puiu
3 months ago
News

A Planet 900 Light-Years Away Has Weather So Extreme “It Feels Like Science Fiction”. It’s 70,000 km/h Winds Carry Vaporized Iron and Even Titanium

byTibi Puiu
4 months ago
This artist’s visualisation of WASP-127b, a giant gas planet located about 520 light-years from Earth, shows its newly discovered supersonic jet winds that move around the planet’s equator. With a speed of 9 km per second (33 000 km/h), this is the fastest jetstream of its kind ever measured in the Universe. By tracking the speed of molecules in the atmosphere with the CRIRES+ instrument on ESO’s Very Large Telescope, researchers found that one side of the planet’s atmosphere is moving towards us and the other away from us. This indicates that there is a powerful wind current going around the planet. 
News

A Gas Giant 500 Light-Years Away Has the Fastest Winds Ever Recorded: A Staggering 33,000 km/h

byTibi Puiu
5 months ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.