ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Robotics

These small flying robots could be the pollinators of the future

We're not sure if robot pollinators are a hi-tech revolution or glimpse into dystopia, but either way, they're edging closer to reality.

Mihai AndreibyMihai Andrei
January 17, 2025
in Agriculture, Future, News, Robotics
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit

Pollinator populations, like bees and butterflies, are collapsing all around the world. This is troubling because, in addition to playing a critical role in sustaining ecosystems, these pollinators are also important for global food production. Robots equipped with advanced sensors, artificial intelligence, and delicate mechanisms could step in to fill this gap.

Now, MIT researchers have developed small robots that can fly up to 100 times more than their predecessors, despite weighing less than a paperclip.

Gif showing robot insect flying
The robotic insect can perform acrobatic maneuvers like aerial flips. Credits: MIT.

Mimicking insects

“Aerial insects are exceptionally agile and precise,” write the authors of the new study. “They perform impressive acrobatic maneuvers when evading predators, recovering from wind gust, or landing on moving objects. Flapping-wing propulsion is advantageous for flight agility because it can generate large changes in instantaneous forces and torques.”

However, replicating this ability in robots has proven very challenging. When insects flap their wings, their tendons and wings suffer high stress and deformation. To endure this, they must be extremely flexible and fatigue-resistant. Engineered materials don’t really exhibit these properties. Or, at least, didn’t — until now.

Previous versions of robot insects usually had four identical units, each with two wings. This made sense from an engineering perspective, but it doesn’t follow insect biology: there’s no insect with eight wings. The new design essentially slashes the structure in half, mimicking the biological structures of insects. It now has four wings with more complex transmissions linking the wings to the actuators (the robotic “muscles” that power flight).

By reducing the number of wings and optimizing their arrangement, researchers eliminated airflow interference. This allows for improved lift generation, freeing up space for potential future additions, such as batteries or sensors. This approach also enables the robots to stay in the air for more time.

Gif showing the wing movement of the robot insect
The new design of these tiny, aerial robots is far more robust and durable than prior versions. Here, the robot is subjected to a collision test. Image credits: MIT.

“The amount of flight we demonstrated in this paper is probably longer than the entire amount of flight our field has been able to accumulate with these robotic insects. With the improved lifespan and precision of this robot, we are getting closer to some very exciting applications, like assisted pollination,” says Kevin Chen, the senior author of an open-access paper on the new design for MIT News.

RelatedPosts

Artificial intelligence still has severe limitations in recognizing what it’s seeing
Is AI Moderation a Useful Tool or Another Failed Social Media Fix?
Machine learning tool 99% accurate at spotting early signs of Alzheimer’s in the lab
Japan’s Restaurants Are Hiring Cat Robots — And They’re Pretty Good Servers

“Compared to the old robot, we can now generate control torque three times larger than before, which is why we can do very sophisticated and very accurate path-finding flights,” Chen adds.

Flying a pollinating robot

long-exposure photo of a robotic insect spelling MIT through its trajectory
Weighing less than a paperclip, the robotic insect can fly long enough to spell M-I-T. in the air. Image credits: MIT.

The motion of the robot is driven by soft actuators. An actuator is a device that converts energy (electric, hydraulic, or pneumatic) into mechanical motion to perform a specific task. The robots’ actuators are made from layers of elastic materials sandwiched between two thin carbon nanotube electrodes, rolled into a squishy cylinder. The actuators compress and elongate, producing the mechanical energy that powers the wings.

With this approach, the robotic insects can hover and maintain stability for over 1,000 seconds (17 minutes).

“When my student Nemo was performing that flight, he said it was the slowest 1,000 seconds he had spent in his entire life. The experiment was extremely nerve-racking,” Chen says.

The potential applications are broad and exciting. In agriculture, these robots could assist with pollination by navigating flowers with precision. Beyond that, incorporating onboard power and sensors could enable autonomous outdoor missions, from environmental monitoring to disaster response.

While challenges remain — such as replicating the intricate muscle control of real insects — the research lays the groundwork for autonomous microbots with real-world utility. The team’s next goals include extending flight times beyond 10,000 seconds and enabling precise interactions with the environment, such as landing on specific targets like flower centers.

The study was published in Science Robotics.

Tags: agriculture technologyartificial intelligenceeco-innovationEnvironmental Technologyflying robotsMIT researchpollinatorsrobotic insectsroboticsscience robotics

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Animals

Scientists Built a Cockroach Cyborg Guided by Light

byTudor Tarita
2 weeks ago
Future

Can you upload a human mind into a computer? Here’s what a neuroscientist has to say about it

byDobromir Rahnev
2 weeks ago
AI-generated image.
Future

Does AI Have Free Will? This Philosopher Thinks So

byMihai Andrei
1 month ago
History

AI Would Obliterate the Nazi’s WWII Enigma Code in Minutes—Here’s Why That Matters Today

byTudor Tarita
1 month ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.