ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists devise tiny robot insects that can’t be crushed by a flyswatter

The soft robots are propelled by hair-thin artificial muscles.

Tibi PuiubyTibi Puiu
December 19, 2019
in News, Robotics, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Fossil Friday: the bug inside the lizard inside the snake
Insects in Germany have declined by up to two-thirds in ten years
The World’s Smallest Flying Robot Is Here. It Weighs Less Than a Raindrop and It’s Powered by Invisible Forces
Jurassic insect resembles modern butterfly, though it predates it by 40 million yeras

In the future, swarms of tiny flying soft robots could zip through the sky, performing various tasks such as monitoring the environment, remote repairs, perhaps even pollination. In Switzerland, engineers have recently demonstrated a new type of insect-like flying robots that may do just that. But don’t let their fragile appearance deceive you — these tiny bots are so strong they can resist being battered by a flyswatter.

The DEAnsect. Credit: EPFL.

Central to the proper functioning of this tiny soft robot, known as DEAnsect, are artificial muscles. Researchers at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland fitted the thumbnail-sized robots with dielectric elastomer actuators (DEAs) — hair-thin artificial muscles — which propel the artificial insects at about 3cm/second through vibrations.

Each DEA contains an elastomer membrane sandwiched between two soft electrodes. When a voltage is applied, the electrodes come together, compressing the membrane; once the voltage is switched off, the membrane returns to its original size. Each of the robot’s legs has three such muscles.

The vibrations caused by switching the artificial muscles on and off (up to 400 times a second) allows the DEAnsect to move with a high degree of accuracy, as demonstrated in experiments in which the robots followed a maze (shown in the video).

These extremely thin artificial muscles allowed the entire design to be streamlined in a very compact frame. The power source only weighs 0.2 grams, while the entire robot, battery and other components included, weighs one gram.

“We’re currently working on an untethered and entirely soft version with Stanford University. In the longer term, we plan to fit new sensors and emitters to the insects so they can communicate directly with one another,” said Herbert Shea, one of the authors of the new study published in Science Robotics.

Tags: artificial muscleflying robotinsect

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Environment

This Caddisfly Discovered Microplastics in 1971—and We Just Noticed

byMihai Andrei
4 weeks ago
Future

The World’s Smallest Flying Robot Is Here. It Weighs Less Than a Raindrop and It’s Powered by Invisible Forces

byTibi Puiu
1 month ago
Protoclone humanoid robot from Clone Robotics.
Future

This Terrifyingly Realistic Android With a Human-Like Skeleton Just Went Viral With Its Freaky Moves

byRupendra Brahambhatt
2 months ago
A rare fungus gnat inside a 40 million year old amber piece.
Animals

Scientists Discover Missing Link Between Insects in Amazing Amber Fossil Dating Back 40 Million Years

byRupendra Brahambhatt
8 months ago

Recent news

The Best Archaeopteryx Fossil Ever Found Just Showed It Could Fly

May 14, 2025

Earliest Reptile Footprints Found By Amateur Paleontologist in 355-Million-Year-Old Rock Push Back the Dawn of Land Animals

May 14, 2025

A Massive Brain Study Reveals the Hidden Work Your Mind Does While You Read

May 14, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.