ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

Self-healing artificial muscle made at Stanford University

The closest we've come to natural muscles is a novel elastomer developed at Stanford University, Palo Alto that can stretch 45 times its length and return to its original size. It's also self-healing.

Tibi PuiubyTibi Puiu
April 19, 2016
in Chemistry, News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

There’s nothing like biological muscles, but the synthetic variety is getting mighty close. Scientists made artificial muscles from all sorts of materials, from nanotech yarn that’s 85 times more powerful than natural muscles, to onions that can be bent and stretched much like a muscle. The closest we’ve come to natural muscles is a novel elastomer developed at Stanford University, Palo Alto that can stretch 45 times its length and return to its original size. It’s also self-healing.

When cut in half, the elastomer can join back if the edges are placed closed enough. Credit: Cheng-Hui Li, Stanford University
When cut in half, the elastomer can join back if the edges are placed close enough. Credit: Cheng-Hui Li, Stanford University

Materials chemist Zhenan Bao and colleagues found the right balance of stretching and strength in Fe-Hpdca-PDMS — a rubber-like material comprised of entangled polymer chains made of silicon, oxygen, nitrogen and carbon atoms, all sprinkled with some iron salt.

The iron is essential to the elastomer’s integrity as it bonds to the oxygen and nitrogen, joining polymer chains in the process like tied shoe laces. The polymer chains are thus linked both to themselves and each other allowing the chains to move, and the material as a whole to stretch.

After the material is stretched, the crosslinks return to their original size.

The most remarkable ability of Stanford’s artificial muscle though is by far the self-healing capability. If you poke a hole in the material, the material will cover it up. That’s because the iron atoms on one side of the hole are attracted to the oxygen and nitrogen atoms on the other. In only 72 hours, a micro-hole is self-healed. Even when the researchers cut the material in half, the cut edges joined back together if these were placed close enough, still retaining 90 percent of its stretchability.

It’s not perfect, though. For artificial muscles to be used in a prosthetic or in the soft limb of a robot, these need to be responsive to electric fields. Stanford’s artificial muscle changes in length by only 2% when an electric field is applied, versus 40 percent in the case of biological muscle.

“In our case, the goal was not to make the best artificial muscle, but rather to develop new materials design rules for stretchable and self-healing materials,” Bao explains. “Artificial muscle is one potential application for our materials.”

Combined with artificial skin that can ‘feel’ or even sprout hair and sweat, Bao’s elastomer could form a very interesting artificial system that mimics the real deal. The remarkable self-healing potential makes it an interesting solution for sensors that need to be placed in extreme conditions where damage is common.

RelatedPosts

Artificial muscle lifts 1,000 times its own weight, brings us closer to humanoid bots
Scientists make muscles out of gold plated onions
Super-strong artificial muscles made from nanotech yarn
This Terrifyingly Realistic Android With a Human-Like Skeleton Just Went Viral With Its Freaky Moves

Findings appeared in the journal Nature Chemistry.

 

Tags: artificial muscle

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Protoclone humanoid robot from Clone Robotics.
Future

This Terrifyingly Realistic Android With a Human-Like Skeleton Just Went Viral With Its Freaky Moves

byRupendra Brahambhatt
2 months ago
News

Scientists devise tiny robot insects that can’t be crushed by a flyswatter

byTibi Puiu
5 years ago
Folded actuators 1.
News

Artificial origami-inspired muscle can lift up to 1,000 times its own weight

byAlexandru Micu
7 years ago
The artificial muscle seen here performing biceps motion in order to lift a skeleton's arm to a 90 degree position. Credit: Aslan Miriyev/Columbia Engineering.
News

Artificial muscle lifts 1,000 times its own weight, brings us closer to humanoid bots

byTibi Puiu
8 years ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.