ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Predators can change their prey’s brains

Somewhere in Trinidad, killifish are growing more brain cells to avoid predators.

Alexandru MicubyAlexandru Micu
January 8, 2020 - Updated on January 10, 2020
in Animals, Biology, Neurology, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Killifish in Trinidad that live with predators in their environment grow more brain cells than their less-stressed peers, a new paper found.

Spotfin killifish (Fundulus luciae).
Image credits Scott Smith / ncfishes.

What doesn’t kill you makes you stronger — but it seems they also make you brainier. New research suggests that animals living in predator-heavy environments grow more brain cells than animals that face little to no predation. The findings were made using a group of killifish in a river in Trinidad that is separated into individual populations by waterfalls. These waterfalls block predators from swimming upstream.

Outsmarting the competition

“The killifish living downstream live among predatory fish, while the fish upstream do not,” Josh Corbo, Cancer Research Training Award (CRTA) Fellow at the National Cancer Institute and co-author of the study, told Andrew Concatelli. “Our central question was: how does negative stimuli—predation—in the environment affect the rate of brain cell proliferation?”

“The implication of our research reaches much farther than the Northern Mountain Range of Trinidad. The topic of how the environment we live in affects our health concerns many disciplines, from public health to sociology. Our research draws more attention to our understanding of the relationship we as organisms have with our environment.”

The team writes that while environmental factors are known to influence brain cell proliferation, contributing to brain plasticity and a greater ability to adapt to these factors, there is no research to date on whether environmental factors trump genetic ones in this regard. In other words, on whether the conditions we live in can shape our brain more than our genetics.

To find out, they examined free-living populations of Trinidadian killifish (Rivulus hartii) exposed to very different environmental conditions. Together with Margarita Vergara, now earning a master’s in clinical embryology at the University of Oxford, Corbo sectioned brain tissues used a procedure known as immunohistochemistry to quantify the formation of new brain cells in these animals. The research was carried out while both authors were majoring at Trinity College, Connecticut.

The fish that lived in predatory-heavy areas showed higher rates of brain cell proliferation (roughly twofold higher) and faster brain growth relative to body size than their peers. “Cell proliferation differs among brain regions but is correlated across brain regions,” the authors note, showing that this effect is brain-wide but not necessarily uniform. However, wild-caught fish from predator-heavy areas also had a smaller relative brain size in their early adulthood.

In order to check whether the effect was genetic or environmental in nature, the team also reared a new generation of fish from members in both (predatory-heavy and predatory-free) environments in uniform lab conditions for between 54 and 82 days.

Animals descended from predation-heavy environments also showed a higher rate of brain cell proliferation and faster brain growth compared to those descended from predator-free areas. Furthermore, they found that wild-caught fish had greater cell proliferation in the forebrain than laboratory-reared fish, but very similar everywhere else. This, they explain, suggests that the effect is environmental, not genetic.

RelatedPosts

Honeybee brains could be a good model to study human brains on
Wild cats’ brains evolve to a different tune than those of primates, study finds
T. rex wasn’t that smart after all. Its intelligence was more on par with a large crocodile
Surströmming: the infamous Swedish fermented fish that’s putridly fascinating

“However, both populations showed similar patterns of divergence in the wild and in captivity, indicating that the predator environment per se does not contribute to the enhancement of cell proliferation by the natural habitat,” the team writes.

“The differences in cell proliferation observed across the brain in both the field and [laboratory] studies indicate that the differences are probably genetically based and are mediated by evolutionary shifts in overall brain growth and life-history traits.”

The team says that the observed changes among the two populations could be explained through several different mechanisms. Either individuals are increasing the rate at which they generate new brain cells as a response to predators, or we could be seeing the effects of natural selection at work — in essence, that brainy fish go on to reproduce while the rest get eaten. Alternatively, the presence of predatory fish could improve conditions for the killifish that evade capture, for example by making food more readily available to them through lower competition, which could lead to changes in brain cell proliferation.

The paper “Predation drives the evolution of brain cell proliferation and brain allometry in male Trinidadian killifish, Rivulus hartii” has been published in the journal Royal Society B: Biological Sciences.

Tags: animalsbrainfishkillifishpredator

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Mind & Brain

First Mammalian Brain-Wide Map May Reveal How Intuition and Decision-Making Works

byTudor Tarita
4 days ago
Mind & Brain

Our Thumbs Could Explain Why Human Brains Became so Powerful

byTibi Puiu
2 weeks ago
Mind and Brain

Do You Think in Words or Pictures? Your Inner Voice Is Actually Stranger Than You Thought

byJoshika Komarla
4 weeks ago
News

Scientists Gave People a Fatty Milkshake. It Turned Out To Be a “Brain Bomb”

byChris Marley
1 month ago

Recent news

How Bees Use the Sun for Navigation Even on Cloudy Days

September 12, 2025

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

September 12, 2025

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

September 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.