ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Quantum computers will be able to simulate particle collisions [w/ video]

Mihai AndreibyMihai Andrei
June 3, 2012
in Physics, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit
Quantum computers could answer numerous extremely complicated questions, impossible to unlock at the moment

Effective quantum computers are still far away, but researchers are already showing more and more advantages these devices would bring to the table. A trio of theorists have shown one more talent of a quantum computer: it would be powerful enough to study the inner workings of the universe in ways that are far beyond the reach of even the most powerful conventional supercomputers.

Storing quantum information in atoms or using qubits is already a thing of the present, but quantum computers still require technologies that will likely be perfected in a few decades. The genius move here is building processors that rely on quantum mechanics instead of classical mechanics – these laws allow quantum switches to exist in both on and off simultaneous, thus being able to consider all the possible solutions at once.

Graphical representation of particle collisions

Aside from bringing us some really cool and fast computers, it will also enable scientists to create some incredibly powerful quantum computers, which will be able to answer some of the biggest questions at the moment.

“We have this theoretical model of the quantum computer, and one of the big questions is, what physical processes that occur in nature can that model represent efficiently?” said Stephen Jordan, a theorist in NIST‘s Applied and Computational Mathematics Division. “Maybe particle collisions, maybe the early universe after the Big Bang? Can we use a quantum computer to simulate them and tell us what to expect?”

Questions such as this one involve keeping track of multiple elements and analyzing all their possible interactions, something which is just too much for today’s supercomputers. However, the team developed an algorithm that could run on any quantum computer, regardless of the specific technology which will be eventually used to build it. The algorithm would simulate all the possible interactions between two elementary particles colliding with each other, something that currently requires years of effort and a large accelerator to study.

Simulating these collisions is an enormously difficult problem for today’s digital computers because the quantum state of the colliding particles is very complex and, therefore, difficult to represent accurately with a feasible number of bits which only work with 0 and 1. The team’s algorithm, however, encodes the information that describes this quantum state far more efficiently using an array of quantum switches, making the computation far more reasonable.

Quantum entanglement

“What’s nice about the simulation is that you can raise the complexity of the problem by increasing the energy of the particles and collisions, but the difficulty of solving the problem does not increase so fast that it becomes unmanageable,” Preskill says. “It means a quantum computer could handle it feasibly.”

Even though their algorithm showed only one type of collision, they believe their work paves the way for exploring the entire theoretical foundation on which fundamental physics rests.

RelatedPosts

Quantum information stored in a single atom
Chinese satellite beams entangled particles over 1,200km away, sets the stage for unhackable quantum network
New technique bypasses Heisenberg’s Uncertainty Principle
Quantum computers might soon render RSA encryption obsolete

“We believe this work could apply to the entire standard model of physics,” Jordan says. “It could allow quantum computers to serve as a sort of wind tunnel for testing ideas that often require accelerators today.”

Via Physorg

Tags: quantum computerquantum entanglementqubit

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

photo (c) John Cairns
Future

Scientists Just Linked Two Quantum Computers With “Quantum Teleportation” for the First Time and It Changes Everything

byTibi Puiu
4 months ago
News

Physicists Observe Entangled Top Quarks for the First Time

byTibi Puiu
9 months ago
News

Pentagon funds quantum laser to overcome battlefield challenges

byTibi Puiu
12 months ago
Future

What does quantum cryptography mean for cybersecurity

byAlexandra Gerea
2 years ago

Recent news

Bioengineered tooth “grows” in the gum and fuses with existing nerves to mimic the real thing

June 13, 2025

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

June 13, 2025

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.