Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Physics

Graphene light sensor is 1,000 more sensitive than current options

Tibi Puiu by Tibi Puiu
June 4, 2013
in Physics, Technology

NTU Asst Prof Wang Qijie, 34, and lead author PhD student Liu Tao, 29, looking at their newly designed nanostructured graphene. (Photo : Nanyang Technological University)
NTU Asst Prof Wang Qijie, 34, and lead author PhD student Liu Tao, 29, looking at their newly designed nanostructured graphene. (Photo : Nanyang Technological University)

It seems like every week there’s a new study that hails a new wonder property or fantastic application for graphene. Is it truly the  material of the future that will catapult technology to the next level? Seems like it. For instance, scientists at Nanyang Technological University (NTU) in Singapore used graphene as the basis for a novel image sensor. The resulting device is 1,000 more sensitive to light than current commercially available sensors, uses 10 times less energy and if mass produced could be five times cheaper. Since the graphene-based sensor can detect a wider spectrum of light, if introduced, it may significantly boost the quality in imaging cameras of all types, traffic speed cameras, satellite imaging and more.

Graphene is all made out of pure carbon, arranged in a honey-comb structure only one atom thick. It may sound like fragile, but it’s not. It’s actually incredibly strong – the strongest material in the world –  so strong that a single sheet as thin as clingfilm could hold the weight of an elephant. It’s also very flexible and has a high electrical conductivity, among many other appealing properties.

Fabrication process of the device. (a) A monolayer graphene was mechanically exfoliated onto a 285nm SiO2/Si substrate. (b) The graphene photodetector was processed into a FET structure. Two electrodes (that is, the source and the drain terminals) of Ti/Au (20 nm/80 nm) were fabricated on the graphene by photolithography and lift-off processes. The gate terminal was fabricated on the bottom of the Si substrate. (c) A thin nm-scale Ti sacrificial layer was deposited onto the graphene by electron-beam evaporation. (d) The Ti sacrificial layer was removed via wet etching, and then GQD array structure with various quantum dot (QD) sizes can be formed on the Si substrate depending on the thickness of the Ti layer. (Credit: Y. Z. Zhang et al./Nature Communications)
Fabrication process of the device. (a) A monolayer graphene was mechanically exfoliated onto a 285nm SiO2/Si substrate. (b) The graphene photodetector was processed into a FET structure. Two electrodes (that is, the source and the drain terminals) of Ti/Au (20 nm/80 nm) were fabricated on the graphene by photolithography and lift-off processes. The gate terminal was fabricated on the bottom of the Si substrate. (c) A thin nm-scale Ti sacrificial layer was deposited onto the graphene by electron-beam evaporation. (d) The Ti sacrificial layer was removed via wet etching, and then GQD array structure with various quantum dot (QD) sizes can be formed on the Si substrate depending on the thickness of the Ti layer. (Credit: Y. Z. Zhang et al./Nature Communications)

“We have shown that it is now possible to create cheap, sensitive, and flexible photo sensors from graphene alone,” said  Assistant Professor Wang Qijie, from NTU’s School of Electrical & Electronic Engineering. “We expect our innovation will have great impact not only on the consumer imaging industry, but also in satellite imaging and communication industries, as well as the mid-infrared applications,” said Wang, who also holds a joint appointment in NTU’s School of Physical and Mathematical Sciences.

“While designing this sensor, we have kept current manufacturing practices in mind. This means the industry can in principle continue producing camera sensors using the CMOS (complementary metal-oxide-semiconductor) process, which is the prevailing technology used by the majority of factories in the electronics industry. Therefore manufacturers can easily replace the current base material of photo sensors with our new nano-structured graphene material.”

Wang Qijie, the inventor of the new sensor, devised the highly sensitive sensor by first fabricating graphene sheets into novel structures that “trap” light-generated electron particles, resulting in a much stronger electric signal. Trapping electrons is the key to achieving high photo-response in graphene, which makes it far more effective than the normal CMOS or CCD (charge-coupled device) image sensors, said Wang. The stronger the electric signals generated, the clearer and sharper the photos. So, once the first graphene-based sensor equipped cameras hit the market, blurry pictures might become a distance memory. Also, just think about what kind of night vision goggles you can make using graphene. Nevermind, you can  improve just about anything with graphene.

Currently, the researchers are in talks with major manufacturers to introduce the technology within a few years in their product development cycle.

Findings were reported in the journal Nature Communications.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Spider-like ultra-sensitive sensor enhances human touch
  2. Mixing Silly Putty with graphene creates incredibly sensitive pressure sensors, scientists find
  3. Graphene elastomer is more sensitive than human skin
  4. New Catalyst converts CO2 to methanol 90 times faster than current options
  5. We’re inching closer to a better sunscreen that won’t kill corals (unlike our current options)
Tags: graphene

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW