Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Geology

Geophysics shows plume of Yellowstone volcano is much larger than previously believed

Mihai Andrei by Mihai Andrei
April 12, 2011
in Geology, Physics

Yellowstone is without a doubt one of the most fascinating places on the face of the planet. But it doesn’t only attract families or people who want to relax, but it attracts scientists as well, and among them, geologists and geophysicists hold a top spot. University of Utah researchers made the first large-scale picture of the electrical conductivity of the enormous underground plume of hot and partially molten rock that feeds the Yellowstone volcano. The image suggests that it is much bigger than previously thought before, when it was also investigated with geophysical methods, but in the form of seismic waves.

“It’s like comparing ultrasound and MRI in the human body; they are different imaging technologies,” says geophysics Professor Michael Zhdanov, principal author of the new study and an expert on measuring electric and magnetic fields, with the purpose of investigating underground objectives.

In a previous 2009 study, researchers (Smith) used seismic waves from earthquakes to make an accurate image of the plume that feeds the volcano. In addition to other factors, seismic waves travel faster in cold rocks and slower in hotter rocks, so seismic velocity information can be used to make a pretty accurate 3D picture, much like X-rays are combined to make a medical CT scan.

But in this type of cases, electric measurements can be much more direct and offer much more answers, but they measure slightly different things. Seismic analysis shows which rocks are hotter and slow down waves, while electric measurements show the conductivity of the rocks, and is especially sensible to briny fluids that conduct electricity.

“It [the plume] is very conductive compared with the rock around it,” Zhdanov says. “It’s close to seawater in conductivity.”

The new study doesn’t say anything about the chances of a catastrophic eruption at Yellowstone, but it does seem to suggest than when it is going to come, it will be bigger than previously expected.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. When CSI and geophysics meet
  2. Goats are far more clever than previously believed, study shows
  3. Americans build larger and larger churches
  4. Melt rises up 25 times faster than previously believed
  5. Universe could hold three times more stars than previously believed
Tags: electricityeruptiongeophysical surveygeophysicsmagneticplumeyellowstone volcano

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW