ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

These tiny birds’ hopping could teach robots how to navigate rough environments

Hoppity hop.

Alexandru MicubyAlexandru Micu
May 22, 2017 - Updated on August 24, 2023
in Animals, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

While usually gracious and smooth, birds’ flight likely started off as a short hop-and-flap to help dinosaurs forage better. A paper from Stanford University analyzes the energy used by a type of small parrot as it hops from branch to branch during foraging, and reports that their movements optimize energy usage and could be similar to the way their ancestors learned to fly.

Parrotlet hopping.
Image credits Diana Chin, Lentink Lab.

If you’re trying to understand the origins of animal flight, parrotlets make for a wonderful set of lab assistants. These diminutive parrots live from Mexico to southern parts of South America and are easy to train or care for and have a rather general flight pattern, unlike certain species — say hummingbirds, for example. They’re also extremely cute.

More to the point, a team of researchers from the Department of Mechanical Engineering at the Stanford University reports that the tiny birds tend to conserve energy on short distances from perch to perch by jumping or hopping most of the way. This behavior could offer a glimpse into the early days of flight, when feathered dinosaurs were just taking off the ground.

“Sometimes they were more cautious, they would literally just step between perches,” says lead author Diana Chin. “There was one bird that would basically do the splits.”

Flying by degrees

The team worked with four Pacific parrotlets, rewarding them with a seed each time they voluntarily jumped between force-sensitive perches inside an aerodynamic force platform. When the researchers widened the gap between perches, the parrotlets started to add some half-wingbeats in their jump. Birds use this kind of hop-and-flap to navigate tree branches with minimal effort (and so minimal energy expenditure) while foraging for food.

“[…] we discovered that parrotlets direct their leg impulse to minimize the mechanical energy needed to forage over different distances and inclinations,” the paper reads.

Less energy expenditure while searching for food means the birds could save up for situations when they really need it — such as fighting off a predator or competing for a mate. It’s likely that the first dinosaurs also used this hoping behavior to forage food, as the team’s computer models revealed that a single such “proto-wingbeat” could increase a feathered dinosaur’s jump range.

Parrotlet hopping 2.
Image credits Diana Chin, Lentink Lab.

Using data observed from the parrotlets and data from her previous studies, Chin put together a computer model showing the optimal angle of takeoff, and calculating the energy costs involved in different movements — for example the proto-wingbeats.

At first, while dinosaurs were still large and their feathers relatively small to their bodies this increase in mobility was negligible, but as dinosaurs got smaller and more specialized, the effect of the proto-wingbeat increased dramatically. Furthermore, the models revealed that these short jumps contain all the motions and tools to eventually develop into actual wing beats and flight.

RelatedPosts

What cockroaches can teach us about balance
US waters have a new guardian – the tuna robot
Japan plans a Moon base by 2020, built by the robots, for the robots
Scientists observe nanobots coordinating inside a living host for the first time

Looking back at the way birds and their dinosaur ancestors learned how to hop around in trees (which are a pretty complex environment to navigate compared to a flat surface) could help design robots which could navigate very difficult or varied terrain.

Chin’s models could help design robots with both legs and wings. By conserving energy and using the most efficient motions to get around a cluttered area, a winged robot could significantly extend its operational range. The team now plans to look into how parrotlets can stick to the landing on a wide variety of surfaces, and work on designing and building the winged robots.

The paper “How birds direct impulse to minimize the energetic cost of foraging flight” has been published in the journal Nature.

Tags: FLyingJumpingParrotletrobots

Share51TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

China released an open source kung-fu robot and we’re not really sure why

byMihai Andrei
3 months ago
News

This small robot is the ‘jumpiest’ ever created — it can jump over Big Ben

byMihai Andrei
12 months ago
Future

Meet the smallest and fastest robot-insects ever developed

byMihai Andrei
1 year ago
A colorful image of anthrobot with cilia on its outer surface.
Biology

Scientists create healing microbots made of human skin cells

byRupendra Brahambhatt
2 years ago

Recent news

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

June 13, 2025

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

June 13, 2025

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.