ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Could a Bronze Age technology help us store renewable energy?

Firebricks could act as better batteries for renewable energy.

Mihai AndreibyMihai Andrei
August 6, 2024
in News, Renewable Energy, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

Firebricks — heat-resistant bricks designed to withstand and store high temperatures without getting damaged — were developed during the early Bronze Age. They were used to line primitive kilns dug into the ground. Now, researchers believe they could play a role in our energy transition.

Fire bricks from a temple in India
Fire bricks from a temple in India. Image via Wiki Commons.

Heat batteries

These bricks are composed of specific materials such as alumina, silica, and magnesia, which give them high densities, and melting points. This makes them ideal for storing heat generated from excess renewable electricity.

The cost advantage of firebricks is significant, though it’s not obvious at first glance. They’re really expensive compared to regular bricks. However, these bricks really are excellent at storing heat — and they are certainly cheaper than batteries.

“The difference between firebrick storage and battery storage is that the firebricks store heat rather than electricity and are one-tenth the cost of batteries,” said lead study author Mark Z. Jacobson, a professor of civil and environmental engineering in the Stanford Doerr School of Sustainability and School of Engineering. “The materials are much simpler too. They are basically just the components of dirt.”

Many industrial processes use high heat. Jacobson and colleagues calculated what would happen if this type of brick were used for heat storage in industrial processes, in a scenario where there is 100% renewable energy usage.

The cost per kilowatt-hour-thermal (kWh-th) for a firebrick storage system is less than one-tenth the cost of a battery storage system per kilowatt-hour-electricity (kWh-e). This cost efficiency makes firebricks a promising tool in the effort to transition to 100% renewable energy.

Industrial fire bricks

Industrial processes that require high-temperature heat are responsible for approximately 17% of global carbon dioxide emissions. These processes include the production of cement, steel, glass, and chemicals.

RelatedPosts

New water-based battery that uses organic materials instead of toxic metals could solve renewable storage problem
New Solar Tech Captures CO₂ from air and Turns It into Fuel
Military scientists announce they are close to turning seawater into jet fuel
America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

Traditional methods of providing process heat involve burning fossil fuels, which are both carbon-intensive and costly. By contrast, using renewable electricity to generate heat and storing it in firebricks presents a sustainable and economical alternative, the researchers calculated.

Essentially, firebricks could serve as “batteries” for this heat. This stored heat can then be used on demand for various industrial processes. The firebricks are arranged in patterns that allow air to flow through them, either emitting infrared radiation directly or heating air that is then used in industrial applications.

“By storing energy in the form closest to its end use, you reduce inefficiencies in energy conversion,” said co-author Daniel Sambor, a postdoctoral scholar in civil and environmental engineering. “It’s often said in our field that ‘if you want hot showers, store hot water, and if you want cold drinks, store ice’; so this study can be summarized as ‘if you need heat for industry, store it in firebricks.’”

Why this is such a good idea

The primary advantage of firebricks over traditional battery storage is cost. While batteries are effective for short-term energy storage, they are significantly more expensive per unit of energy stored compared to firebricks. Additionally, batteries have lower capacity factors, meaning they are not utilized as efficiently as firebricks for long-term storage.

Firebricks also offer greater flexibility. They can store heat for extended periods, making them ideal for industries that require a continuous heat supply. This flexibility helps to smooth out the variability of renewable energy sources like wind and solar, which may fluctuate based on weather conditions.

However, there are several caveats. Firstly, there’s the uncertainty in the daily heat loss rate of firebricks. Current estimates suggest a loss rate of about 1% per day, but further research is needed to optimize insulation and minimize losses. Then, the study assumed that virtually all the energy in the world is renewable — which is not the case yet.

“Ours is the first study to examine a large-scale transition of renewable energy with firebricks as part of the solution,” Jacobson said. “We found that firebricks enable a faster and lower-cost transition to renewables, and that helps everyone in terms of health, climate, jobs, and energy security.”

The study was published in PNAS Nexus.

Tags: firebricksrenewable energy

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Future

Sinking Giant Concrete Orbs to the Bottom of the Ocean Could Store Massive Amounts of Renewable Energy

byTibi Puiu
1 week ago
Agriculture

America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

byTudor Tarita
2 months ago
Climate

This Solar-Powered Device Sucks CO2 From the Air—and Turns It Into Fuel

byTibi Puiu
2 months ago
News

For the first time ever, wind and solar produced more electricity than coal in the US

byTudor Tarita
3 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.